File size: 20,196 Bytes
1433a8a 91abacf 9e81c40 b0acc25 a7ab361 91abacf a7ab361 91abacf a7ab361 91abacf a7ab361 91abacf a7ab361 91abacf a7ab361 91abacf 1433a8a f6063b5 1433a8a f23e239 d8a45be f23e239 d8a45be f23e239 d8a45be f23e239 d8a45be f23e239 d8a45be f23e239 d8a45be f23e239 d8a45be f23e239 d8a45be f23e239 1433a8a b0acc25 1433a8a b0acc25 c29f390 1433a8a f6063b5 1433a8a c29f390 b0acc25 635cb64 1433a8a 91abacf 1433a8a 91abacf 1433a8a f23e239 d8a45be f23e239 d8a45be f23e239 d8a45be f23e239 1433a8a f6063b5 91abacf 5742358 9abcaed 91abacf 1433a8a 91abacf 9e81c40 1433a8a f6063b5 91abacf 5742358 9abcaed 91abacf 1433a8a 91abacf 9e81c40 1433a8a 0120d04 91abacf 0120d04 f23e239 0120d04 91abacf 0120d04 f23e239 0120d04 f23e239 91abacf f23e239 1433a8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:1460771
- loss:ArcFaceInBatchLoss
base_model: Alibaba-NLP/gte-modernbert-base
widget:
- source_sentence: '"How much would I need to narrate a ""Let''s Play"" video in order
to make money from it on YouTube?"'
sentences:
- How much money do people make from YouTube videos with 1 million views?
- '"How much would I need to narrate a ""Let''s Play"" video in order to make money
from it on YouTube?"'
- '"Does the sentence, ""I expect to be disappointed,"" make sense?"'
- source_sentence: '"I appreciate that.'
sentences:
- '"How is the Mariner rewarded in ""The Rime of the Ancient Mariner"" by Samuel
Taylor Coleridge?"'
- '"I appreciate that.'
- I can appreciate that.
- source_sentence: '"""It is very easy to defeat someone, but too hard to win some
one"". What does the previous sentence mean?"'
sentences:
- '"How can you use the word ""visceral"" in a sentence?"'
- '"""It is very easy to defeat someone, but too hard to win some one"". What does
the previous sentence mean?"'
- '"What does ""The loudest one in the room is the weakest one in the room."" Mean?"'
- source_sentence: '" We condemn this raid which is in our view illegal and morally
and politically unjustifiable , " London-based NCRI official Ali Safavi told Reuters
by telephone .'
sentences:
- 'London-based NCRI official Ali Safavi told Reuters : " We condemn this raid ,
which is in our view illegal and morally and politically unjustifiable . "'
- The social awkwardness is complicated by the fact that Marianne is a white girl
living with a black family .
- art's cause, this in my opinion
- source_sentence: '"If you click ""like"" on an old post that someone made on your
wall yet you''re no longer Facebook friends, will they still receive a notification?"'
sentences:
- '"Is there is any two wheeler having a gear box which has the feature ""automatic
neutral"" when the engine is off while it is in gear?"'
- '"If you click ""like"" on an old post that someone made on your wall yet you''re
no longer Facebook friends, will they still receive a notification?"'
- '"If your teenage son posted ""La commedia e finita"" on his Facebook wall, would
you be concerned?"'
datasets:
- redis/langcache-sentencepairs-v2
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@1
- cosine_map@100
- cosine_auc_precision_cache_hit_ratio
- cosine_auc_similarity_distribution
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
results:
- task:
type: custom-information-retrieval
name: Custom Information Retrieval
dataset:
name: test
type: test
metrics:
- type: cosine_accuracy@1
value: 0.5880558568329718
name: Cosine Accuracy@1
- type: cosine_precision@1
value: 0.5880558568329718
name: Cosine Precision@1
- type: cosine_recall@1
value: 0.5707119922832199
name: Cosine Recall@1
- type: cosine_ndcg@10
value: 0.771771481653434
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.5880558568329718
name: Cosine Mrr@1
- type: cosine_map@100
value: 0.7214095423928245
name: Cosine Map@100
- type: cosine_auc_precision_cache_hit_ratio
value: 0.35287530778716975
name: Cosine Auc Precision Cache Hit Ratio
- type: cosine_auc_similarity_distribution
value: 0.16742922746173
name: Cosine Auc Similarity Distribution
---
# Redis fine-tuned BiEncoder model for semantic caching on LangCache
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 -->
- **Maximum Sequence Length:** 100 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(mlp_hidden): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.ReLU'})
(mlp_out): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
'"If you click ""like"" on an old post that someone made on your wall yet you\'re no longer Facebook friends, will they still receive a notification?"',
'"If you click ""like"" on an old post that someone made on your wall yet you\'re no longer Facebook friends, will they still receive a notification?"',
'"If your teenage son posted ""La commedia e finita"" on his Facebook wall, would you be concerned?"',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 1.0000, 0.2617],
# [1.0000, 1.0000, 0.2617],
# [0.2617, 0.2617, 1.0000]])
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Custom Information Retrieval
* Dataset: `test`
* Evaluated with <code>ir_evaluator.CustomInformationRetrievalEvaluator</code>
| Metric | Value |
|:-------------------------------------|:-----------|
| cosine_accuracy@1 | 0.5881 |
| cosine_precision@1 | 0.5881 |
| cosine_recall@1 | 0.5707 |
| **cosine_ndcg@10** | **0.7718** |
| cosine_mrr@1 | 0.5881 |
| cosine_map@100 | 0.7214 |
| cosine_auc_precision_cache_hit_ratio | 0.3529 |
| cosine_auc_similarity_distribution | 0.1674 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Size: 132,354 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 25.33 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 24.98 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.06 tokens</li><li>max: 68 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
| <code> What high potential jobs are there other than computer science?</code> | <code> What high potential jobs are there other than computer science?</code> | <code>Why IT or Computer Science jobs are being over rated than other Engineering jobs?</code> |
| <code> Would India ever be able to develop a missile system like S300 or S400 missile?</code> | <code> Would India ever be able to develop a missile system like S300 or S400 missile?</code> | <code>Should India buy the Russian S400 air defence missile system?</code> |
| <code> water from the faucet is being drunk by a yellow dog</code> | <code>A yellow dog is drinking water from the faucet</code> | <code>Childlessness is low in Eastern European countries.</code> |
* Loss: <code>losses.ArcFaceInBatchLoss</code> with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Evaluation Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Size: 132,354 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 25.33 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 24.98 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.06 tokens</li><li>max: 68 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
| <code> What high potential jobs are there other than computer science?</code> | <code> What high potential jobs are there other than computer science?</code> | <code>Why IT or Computer Science jobs are being over rated than other Engineering jobs?</code> |
| <code> Would India ever be able to develop a missile system like S300 or S400 missile?</code> | <code> Would India ever be able to develop a missile system like S300 or S400 missile?</code> | <code>Should India buy the Russian S400 air defence missile system?</code> |
| <code> water from the faucet is being drunk by a yellow dog</code> | <code>A yellow dog is drinking water from the faucet</code> | <code>Childlessness is low in Eastern European countries.</code> |
* Loss: <code>losses.ArcFaceInBatchLoss</code> with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 8192
- `per_device_eval_batch_size`: 8192
- `gradient_accumulation_steps`: 2
- `weight_decay`: 0.001
- `adam_beta2`: 0.98
- `adam_epsilon`: 1e-06
- `num_train_epochs`: 1
- `warmup_ratio`: 0.05
- `bf16`: True
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: 4
- `load_best_model_at_end`: True
- `optim`: stable_adamw
- `ddp_find_unused_parameters`: False
- `dataloader_persistent_workers`: True
- `push_to_hub`: True
- `hub_model_id`: redis/langcache-embed-v3
- `eval_on_start`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8192
- `per_device_eval_batch_size`: 8192
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.98
- `adam_epsilon`: 1e-06
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: 4
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: stable_adamw
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: False
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: True
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: redis/langcache-embed-v3
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}
</details>
### Training Logs
| Epoch | Step | Validation Loss | test_cosine_ndcg@10 |
|:-----:|:----:|:---------------:|:-------------------:|
| 0 | 0 | 2.9916 | 0.7718 |
### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |