File size: 20,196 Bytes
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
91abacf
9e81c40
b0acc25
a7ab361
91abacf
 
a7ab361
91abacf
 
 
 
 
a7ab361
91abacf
 
 
 
 
 
a7ab361
91abacf
 
 
 
 
 
 
a7ab361
91abacf
 
 
 
 
 
 
a7ab361
91abacf
 
 
 
 
 
1433a8a
f6063b5
1433a8a
 
f23e239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8a45be
f23e239
 
d8a45be
f23e239
 
d8a45be
f23e239
 
d8a45be
f23e239
 
d8a45be
f23e239
 
d8a45be
f23e239
 
d8a45be
f23e239
 
d8a45be
f23e239
1433a8a
 
 
 
b0acc25
1433a8a
 
 
 
 
b0acc25
c29f390
1433a8a
 
 
f6063b5
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
c29f390
b0acc25
635cb64
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91abacf
 
 
1433a8a
 
 
 
 
 
 
 
91abacf
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f23e239
 
 
 
 
 
 
 
 
 
 
d8a45be
 
f23e239
 
d8a45be
f23e239
 
d8a45be
f23e239
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6063b5
91abacf
5742358
9abcaed
91abacf
 
 
 
1433a8a
91abacf
 
 
 
 
9e81c40
 
 
 
 
 
 
 
1433a8a
 
 
 
 
f6063b5
91abacf
5742358
9abcaed
91abacf
 
 
 
1433a8a
91abacf
 
 
 
 
9e81c40
 
 
 
 
 
 
 
1433a8a
0120d04
 
 
 
91abacf
 
0120d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f23e239
0120d04
 
 
 
 
 
 
 
 
91abacf
 
0120d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f23e239
0120d04
 
 
 
 
 
 
 
 
 
 
 
f23e239
 
 
91abacf
f23e239
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:1460771
- loss:ArcFaceInBatchLoss
base_model: Alibaba-NLP/gte-modernbert-base
widget:
- source_sentence: '"How much would I need to narrate a ""Let''s Play"" video in order
    to make money from it on YouTube?"'
  sentences:
  - How much money do people make from YouTube videos with 1 million views?
  - '"How much would I need to narrate a ""Let''s Play"" video in order to make money
    from it on YouTube?"'
  - '"Does the sentence, ""I expect to be disappointed,"" make sense?"'
- source_sentence: '"I appreciate that.'
  sentences:
  - '"How is the Mariner rewarded in ""The Rime of the Ancient Mariner"" by Samuel
    Taylor Coleridge?"'
  - '"I appreciate that.'
  - I can appreciate that.
- source_sentence: '"""It is very easy to defeat someone, but too hard to win some
    one"". What does the previous sentence mean?"'
  sentences:
  - '"How can you use the word ""visceral"" in a sentence?"'
  - '"""It is very easy to defeat someone, but too hard to win some one"". What does
    the previous sentence mean?"'
  - '"What does ""The loudest one in the room is the weakest one in the room."" Mean?"'
- source_sentence: '" We condemn this raid which is in our view illegal and morally
    and politically unjustifiable , " London-based NCRI official Ali Safavi told Reuters
    by telephone .'
  sentences:
  - 'London-based NCRI official Ali Safavi told Reuters : " We condemn this raid ,
    which is in our view illegal and morally and politically unjustifiable . "'
  - The social awkwardness is complicated by the fact that Marianne is a white girl
    living with a black family .
  - art's cause, this in my opinion
- source_sentence: '"If you click ""like"" on an old post that someone made on your
    wall yet you''re no longer Facebook friends, will they still receive a notification?"'
  sentences:
  - '"Is there is any two wheeler having a gear box which has the feature ""automatic
    neutral"" when the engine is off while it is in gear?"'
  - '"If you click ""like"" on an old post that someone made on your wall yet you''re
    no longer Facebook friends, will they still receive a notification?"'
  - '"If your teenage son posted ""La commedia e finita"" on his Facebook wall, would
    you be concerned?"'
datasets:
- redis/langcache-sentencepairs-v2
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@1
- cosine_map@100
- cosine_auc_precision_cache_hit_ratio
- cosine_auc_similarity_distribution
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
  results:
  - task:
      type: custom-information-retrieval
      name: Custom Information Retrieval
    dataset:
      name: test
      type: test
    metrics:
    - type: cosine_accuracy@1
      value: 0.5880558568329718
      name: Cosine Accuracy@1
    - type: cosine_precision@1
      value: 0.5880558568329718
      name: Cosine Precision@1
    - type: cosine_recall@1
      value: 0.5707119922832199
      name: Cosine Recall@1
    - type: cosine_ndcg@10
      value: 0.771771481653434
      name: Cosine Ndcg@10
    - type: cosine_mrr@1
      value: 0.5880558568329718
      name: Cosine Mrr@1
    - type: cosine_map@100
      value: 0.7214095423928245
      name: Cosine Map@100
    - type: cosine_auc_precision_cache_hit_ratio
      value: 0.35287530778716975
      name: Cosine Auc Precision Cache Hit Ratio
    - type: cosine_auc_similarity_distribution
      value: 0.16742922746173
      name: Cosine Auc Similarity Distribution
---

# Redis fine-tuned BiEncoder model for semantic caching on LangCache

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 -->
- **Maximum Sequence Length:** 100 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (mlp_hidden): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.ReLU'})
  (mlp_out): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
    '"If you click ""like"" on an old post that someone made on your wall yet you\'re no longer Facebook friends, will they still receive a notification?"',
    '"If you click ""like"" on an old post that someone made on your wall yet you\'re no longer Facebook friends, will they still receive a notification?"',
    '"If your teenage son posted ""La commedia e finita"" on his Facebook wall, would you be concerned?"',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 1.0000, 0.2617],
#         [1.0000, 1.0000, 0.2617],
#         [0.2617, 0.2617, 1.0000]])
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Custom Information Retrieval

* Dataset: `test`
* Evaluated with <code>ir_evaluator.CustomInformationRetrievalEvaluator</code>

| Metric                               | Value      |
|:-------------------------------------|:-----------|
| cosine_accuracy@1                    | 0.5881     |
| cosine_precision@1                   | 0.5881     |
| cosine_recall@1                      | 0.5707     |
| **cosine_ndcg@10**                   | **0.7718** |
| cosine_mrr@1                         | 0.5881     |
| cosine_map@100                       | 0.7214     |
| cosine_auc_precision_cache_hit_ratio | 0.3529     |
| cosine_auc_similarity_distribution   | 0.1674     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Size: 132,354 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                           | negative                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | string                                                                            |
  | details | <ul><li>min: 4 tokens</li><li>mean: 25.33 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 24.98 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.06 tokens</li><li>max: 68 tokens</li></ul> |
* Samples:
  | anchor                                                                                        | positive                                                                                      | negative                                                                                       |
  |:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
  | <code> What high potential jobs are there other than computer science?</code>                 | <code> What high potential jobs are there other than computer science?</code>                 | <code>Why IT or Computer Science jobs are being over rated than other Engineering jobs?</code> |
  | <code> Would India ever be able to develop a missile system like S300 or S400 missile?</code> | <code> Would India ever be able to develop a missile system like S300 or S400 missile?</code> | <code>Should India buy the Russian S400 air defence missile system?</code>                     |
  | <code> water from the faucet is being drunk by a yellow dog</code>                            | <code>A yellow dog is drinking water from the faucet</code>                                   | <code>Childlessness is low in Eastern European countries.</code>                               |
* Loss: <code>losses.ArcFaceInBatchLoss</code> with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Evaluation Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Size: 132,354 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                           | negative                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             | string                                                                            |
  | details | <ul><li>min: 4 tokens</li><li>mean: 25.33 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 24.98 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.06 tokens</li><li>max: 68 tokens</li></ul> |
* Samples:
  | anchor                                                                                        | positive                                                                                      | negative                                                                                       |
  |:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|
  | <code> What high potential jobs are there other than computer science?</code>                 | <code> What high potential jobs are there other than computer science?</code>                 | <code>Why IT or Computer Science jobs are being over rated than other Engineering jobs?</code> |
  | <code> Would India ever be able to develop a missile system like S300 or S400 missile?</code> | <code> Would India ever be able to develop a missile system like S300 or S400 missile?</code> | <code>Should India buy the Russian S400 air defence missile system?</code>                     |
  | <code> water from the faucet is being drunk by a yellow dog</code>                            | <code>A yellow dog is drinking water from the faucet</code>                                   | <code>Childlessness is low in Eastern European countries.</code>                               |
* Loss: <code>losses.ArcFaceInBatchLoss</code> with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 8192
- `per_device_eval_batch_size`: 8192
- `gradient_accumulation_steps`: 2
- `weight_decay`: 0.001
- `adam_beta2`: 0.98
- `adam_epsilon`: 1e-06
- `num_train_epochs`: 1
- `warmup_ratio`: 0.05
- `bf16`: True
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: 4
- `load_best_model_at_end`: True
- `optim`: stable_adamw
- `ddp_find_unused_parameters`: False
- `dataloader_persistent_workers`: True
- `push_to_hub`: True
- `hub_model_id`: redis/langcache-embed-v3
- `eval_on_start`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8192
- `per_device_eval_batch_size`: 8192
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.001
- `adam_beta1`: 0.9
- `adam_beta2`: 0.98
- `adam_epsilon`: 1e-06
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: 4
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `parallelism_config`: None
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: stable_adamw
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: False
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: True
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: redis/langcache-embed-v3
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `hub_revision`: None
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `liger_kernel_config`: None
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
- `router_mapping`: {}
- `learning_rate_mapping`: {}

</details>

### Training Logs
| Epoch | Step | Validation Loss | test_cosine_ndcg@10 |
|:-----:|:----:|:---------------:|:-------------------:|
| 0     | 0    | 2.9916          | 0.7718              |


### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->