Add new SentenceTransformer model
Browse files- 2_Dense/model.safetensors +1 -1
- 3_Dense/model.safetensors +1 -1
- README.md +20 -20
- config.json +1 -1
- model.safetensors +2 -2
2_Dense/model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 2362528
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fe28270e57d9e8e90e8666418d902aa8ecb6254c77adda1949f6cbd4bdddb8c0
|
| 3 |
size 2362528
|
3_Dense/model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 2362528
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9a621984b96056acc53643d57acdce2f420d7dfe7a155ea8fcfd949064f4ff1f
|
| 3 |
size 2362528
|
README.md
CHANGED
|
@@ -83,28 +83,28 @@ model-index:
|
|
| 83 |
type: test
|
| 84 |
metrics:
|
| 85 |
- type: cosine_accuracy@1
|
| 86 |
-
value: 0.
|
| 87 |
name: Cosine Accuracy@1
|
| 88 |
- type: cosine_precision@1
|
| 89 |
-
value: 0.
|
| 90 |
name: Cosine Precision@1
|
| 91 |
- type: cosine_recall@1
|
| 92 |
-
value: 0.
|
| 93 |
name: Cosine Recall@1
|
| 94 |
- type: cosine_ndcg@10
|
| 95 |
-
value: 0.
|
| 96 |
name: Cosine Ndcg@10
|
| 97 |
- type: cosine_mrr@1
|
| 98 |
-
value: 0.
|
| 99 |
name: Cosine Mrr@1
|
| 100 |
- type: cosine_map@100
|
| 101 |
-
value: 0.
|
| 102 |
name: Cosine Map@100
|
| 103 |
- type: cosine_auc_precision_cache_hit_ratio
|
| 104 |
-
value: 0.
|
| 105 |
name: Cosine Auc Precision Cache Hit Ratio
|
| 106 |
- type: cosine_auc_similarity_distribution
|
| 107 |
-
value: 0.
|
| 108 |
name: Cosine Auc Similarity Distribution
|
| 109 |
---
|
| 110 |
|
|
@@ -171,9 +171,9 @@ print(embeddings.shape)
|
|
| 171 |
# Get the similarity scores for the embeddings
|
| 172 |
similarities = model.similarity(embeddings, embeddings)
|
| 173 |
print(similarities)
|
| 174 |
-
# tensor([[
|
| 175 |
-
# [
|
| 176 |
-
# [0.
|
| 177 |
```
|
| 178 |
|
| 179 |
<!--
|
|
@@ -211,14 +211,14 @@ You can finetune this model on your own dataset.
|
|
| 211 |
|
| 212 |
| Metric | Value |
|
| 213 |
|:-------------------------------------|:-----------|
|
| 214 |
-
| cosine_accuracy@1 | 0.
|
| 215 |
-
| cosine_precision@1 | 0.
|
| 216 |
| cosine_recall@1 | 0.5707 |
|
| 217 |
| **cosine_ndcg@10** | **0.7718** |
|
| 218 |
-
| cosine_mrr@1 | 0.
|
| 219 |
| cosine_map@100 | 0.7214 |
|
| 220 |
| cosine_auc_precision_cache_hit_ratio | 0.3529 |
|
| 221 |
-
| cosine_auc_similarity_distribution | 0.
|
| 222 |
|
| 223 |
<!--
|
| 224 |
## Bias, Risks and Limitations
|
|
@@ -292,8 +292,8 @@ You can finetune this model on your own dataset.
|
|
| 292 |
#### Non-Default Hyperparameters
|
| 293 |
|
| 294 |
- `eval_strategy`: steps
|
| 295 |
-
- `per_device_train_batch_size`:
|
| 296 |
-
- `per_device_eval_batch_size`:
|
| 297 |
- `gradient_accumulation_steps`: 2
|
| 298 |
- `weight_decay`: 0.001
|
| 299 |
- `adam_beta2`: 0.98
|
|
@@ -319,8 +319,8 @@ You can finetune this model on your own dataset.
|
|
| 319 |
- `do_predict`: False
|
| 320 |
- `eval_strategy`: steps
|
| 321 |
- `prediction_loss_only`: True
|
| 322 |
-
- `per_device_train_batch_size`:
|
| 323 |
-
- `per_device_eval_batch_size`:
|
| 324 |
- `per_gpu_train_batch_size`: None
|
| 325 |
- `per_gpu_eval_batch_size`: None
|
| 326 |
- `gradient_accumulation_steps`: 2
|
|
@@ -439,7 +439,7 @@ You can finetune this model on your own dataset.
|
|
| 439 |
### Training Logs
|
| 440 |
| Epoch | Step | Validation Loss | test_cosine_ndcg@10 |
|
| 441 |
|:-----:|:----:|:---------------:|:-------------------:|
|
| 442 |
-
| 0 | 0 | 1.
|
| 443 |
|
| 444 |
|
| 445 |
### Framework Versions
|
|
|
|
| 83 |
type: test
|
| 84 |
metrics:
|
| 85 |
- type: cosine_accuracy@1
|
| 86 |
+
value: 0.5880558568329718
|
| 87 |
name: Cosine Accuracy@1
|
| 88 |
- type: cosine_precision@1
|
| 89 |
+
value: 0.5880558568329718
|
| 90 |
name: Cosine Precision@1
|
| 91 |
- type: cosine_recall@1
|
| 92 |
+
value: 0.5707119922832199
|
| 93 |
name: Cosine Recall@1
|
| 94 |
- type: cosine_ndcg@10
|
| 95 |
+
value: 0.771771481653434
|
| 96 |
name: Cosine Ndcg@10
|
| 97 |
- type: cosine_mrr@1
|
| 98 |
+
value: 0.5880558568329718
|
| 99 |
name: Cosine Mrr@1
|
| 100 |
- type: cosine_map@100
|
| 101 |
+
value: 0.7214095423928245
|
| 102 |
name: Cosine Map@100
|
| 103 |
- type: cosine_auc_precision_cache_hit_ratio
|
| 104 |
+
value: 0.35287530778716975
|
| 105 |
name: Cosine Auc Precision Cache Hit Ratio
|
| 106 |
- type: cosine_auc_similarity_distribution
|
| 107 |
+
value: 0.16742922746173
|
| 108 |
name: Cosine Auc Similarity Distribution
|
| 109 |
---
|
| 110 |
|
|
|
|
| 171 |
# Get the similarity scores for the embeddings
|
| 172 |
similarities = model.similarity(embeddings, embeddings)
|
| 173 |
print(similarities)
|
| 174 |
+
# tensor([[0.9998, 0.9998, 0.5864],
|
| 175 |
+
# [0.9998, 0.9998, 0.5864],
|
| 176 |
+
# [0.5864, 0.5864, 1.0000]])
|
| 177 |
```
|
| 178 |
|
| 179 |
<!--
|
|
|
|
| 211 |
|
| 212 |
| Metric | Value |
|
| 213 |
|:-------------------------------------|:-----------|
|
| 214 |
+
| cosine_accuracy@1 | 0.5881 |
|
| 215 |
+
| cosine_precision@1 | 0.5881 |
|
| 216 |
| cosine_recall@1 | 0.5707 |
|
| 217 |
| **cosine_ndcg@10** | **0.7718** |
|
| 218 |
+
| cosine_mrr@1 | 0.5881 |
|
| 219 |
| cosine_map@100 | 0.7214 |
|
| 220 |
| cosine_auc_precision_cache_hit_ratio | 0.3529 |
|
| 221 |
+
| cosine_auc_similarity_distribution | 0.1674 |
|
| 222 |
|
| 223 |
<!--
|
| 224 |
## Bias, Risks and Limitations
|
|
|
|
| 292 |
#### Non-Default Hyperparameters
|
| 293 |
|
| 294 |
- `eval_strategy`: steps
|
| 295 |
+
- `per_device_train_batch_size`: 4096
|
| 296 |
+
- `per_device_eval_batch_size`: 4096
|
| 297 |
- `gradient_accumulation_steps`: 2
|
| 298 |
- `weight_decay`: 0.001
|
| 299 |
- `adam_beta2`: 0.98
|
|
|
|
| 319 |
- `do_predict`: False
|
| 320 |
- `eval_strategy`: steps
|
| 321 |
- `prediction_loss_only`: True
|
| 322 |
+
- `per_device_train_batch_size`: 4096
|
| 323 |
+
- `per_device_eval_batch_size`: 4096
|
| 324 |
- `per_gpu_train_batch_size`: None
|
| 325 |
- `per_gpu_eval_batch_size`: None
|
| 326 |
- `gradient_accumulation_steps`: 2
|
|
|
|
| 439 |
### Training Logs
|
| 440 |
| Epoch | Step | Validation Loss | test_cosine_ndcg@10 |
|
| 441 |
|:-----:|:----:|:---------------:|:-------------------:|
|
| 442 |
+
| 0 | 0 | 1.4689 | 0.7718 |
|
| 443 |
|
| 444 |
|
| 445 |
### Framework Versions
|
config.json
CHANGED
|
@@ -12,7 +12,7 @@
|
|
| 12 |
"cls_token_id": 50281,
|
| 13 |
"decoder_bias": true,
|
| 14 |
"deterministic_flash_attn": false,
|
| 15 |
-
"dtype": "
|
| 16 |
"embedding_dropout": 0.0,
|
| 17 |
"eos_token_id": 50282,
|
| 18 |
"global_attn_every_n_layers": 3,
|
|
|
|
| 12 |
"cls_token_id": 50281,
|
| 13 |
"decoder_bias": true,
|
| 14 |
"deterministic_flash_attn": false,
|
| 15 |
+
"dtype": "float32",
|
| 16 |
"embedding_dropout": 0.0,
|
| 17 |
"eos_token_id": 50282,
|
| 18 |
"global_attn_every_n_layers": 3,
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:04aa7437b7f98ed3f652e300c1d767d07c1864c10b3055ea63831997faefa8d6
|
| 3 |
+
size 596070136
|