srijithrajamohan commited on
Commit
ecf8bc0
·
verified ·
1 Parent(s): 5720d30

Datasets update (#7)

Browse files

- Made changes to the dataset, added sentence transformers citation back in (d725d2c17692489b57e8bf74be0c5e940f6fd151)

Files changed (1) hide show
  1. README.md +14 -11
README.md CHANGED
@@ -39,9 +39,9 @@ model-index:
39
  name: Cosine Ap
40
  ---
41
 
42
- # SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
43
 
44
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the Medical dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity for the purpose of semantic caching in the medical domain.
45
 
46
  ## Model Details
47
 
@@ -117,7 +117,7 @@ print(similarities.shape)
117
 
118
  #### Medical
119
 
120
- * Dataset: Medical dataset
121
  * Size:
122
  * Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
123
 
@@ -125,7 +125,7 @@ print(similarities.shape)
125
 
126
  #### Medical
127
 
128
- * Dataset: Medical dataset
129
  * Size:
130
  * Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
131
 
@@ -133,15 +133,18 @@ print(similarities.shape)
133
 
134
  ### BibTeX
135
 
 
 
136
  #### Sentence Transformers
137
  ```bibtex
138
- @inproceedings{redisetal.,
139
- title = "",
140
- author = "",
141
- month = "",
142
- year = "",
143
- publisher = "",
144
- url = "",
 
145
  }
146
  ```
147
 
 
39
  name: Cosine Ap
40
  ---
41
 
42
+ # Redis Semantic Caching embedding model based on Alibaba-NLP/gte-modernbert-base
43
 
44
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [Medical]( https://www.kaggle.com/datasets/thedevastator/medical-question-pair-classification/data) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity for the purpose of semantic caching in the medical domain.
45
 
46
  ## Model Details
47
 
 
117
 
118
  #### Medical
119
 
120
+ * Dataset: [Medical dataset]( https://www.kaggle.com/datasets/thedevastator/medical-question-pair-classification/data)
121
  * Size:
122
  * Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
123
 
 
125
 
126
  #### Medical
127
 
128
+ * Dataset: [Medical dataset]( https://www.kaggle.com/datasets/thedevastator/medical-question-pair-classification/data)
129
  * Size:
130
  * Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
131
 
 
133
 
134
  ### BibTeX
135
 
136
+ #### Redis Langcache-embed Models
137
+
138
  #### Sentence Transformers
139
  ```bibtex
140
+ @inproceedings{reimers-2019-sentence-bert,
141
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
142
+ author = "Reimers, Nils and Gurevych, Iryna",
143
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
144
+ month = "11",
145
+ year = "2019",
146
+ publisher = "Association for Computational Linguistics",
147
+ url = "https://arxiv.org/abs/1908.10084",
148
  }
149
  ```
150