Commit
·
d725d2c
1
Parent(s):
5720d30
Made changes to the dataset, added sentence transformers citation back in
Browse files
README.md
CHANGED
@@ -39,9 +39,9 @@ model-index:
|
|
39 |
name: Cosine Ap
|
40 |
---
|
41 |
|
42 |
-
#
|
43 |
|
44 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the Medical dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity for the purpose of semantic caching in the medical domain.
|
45 |
|
46 |
## Model Details
|
47 |
|
@@ -117,7 +117,7 @@ print(similarities.shape)
|
|
117 |
|
118 |
#### Medical
|
119 |
|
120 |
-
* Dataset: Medical dataset
|
121 |
* Size:
|
122 |
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
|
123 |
|
@@ -125,7 +125,7 @@ print(similarities.shape)
|
|
125 |
|
126 |
#### Medical
|
127 |
|
128 |
-
* Dataset: Medical dataset
|
129 |
* Size:
|
130 |
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
|
131 |
|
@@ -133,15 +133,18 @@ print(similarities.shape)
|
|
133 |
|
134 |
### BibTeX
|
135 |
|
|
|
|
|
136 |
#### Sentence Transformers
|
137 |
```bibtex
|
138 |
-
@inproceedings{
|
139 |
-
title = "",
|
140 |
-
author = "",
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
145 |
}
|
146 |
```
|
147 |
|
|
|
39 |
name: Cosine Ap
|
40 |
---
|
41 |
|
42 |
+
# Redis Semantic Caching embedding model based on Alibaba-NLP/gte-modernbert-base
|
43 |
|
44 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [Medical]( https://www.kaggle.com/datasets/thedevastator/medical-question-pair-classification/data) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity for the purpose of semantic caching in the medical domain.
|
45 |
|
46 |
## Model Details
|
47 |
|
|
|
117 |
|
118 |
#### Medical
|
119 |
|
120 |
+
* Dataset: [Medical dataset]( https://www.kaggle.com/datasets/thedevastator/medical-question-pair-classification/data)
|
121 |
* Size:
|
122 |
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
|
123 |
|
|
|
125 |
|
126 |
#### Medical
|
127 |
|
128 |
+
* Dataset: [Medical dataset]( https://www.kaggle.com/datasets/thedevastator/medical-question-pair-classification/data)
|
129 |
* Size:
|
130 |
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
|
131 |
|
|
|
133 |
|
134 |
### BibTeX
|
135 |
|
136 |
+
#### Redis Langcache-embed Models
|
137 |
+
|
138 |
#### Sentence Transformers
|
139 |
```bibtex
|
140 |
+
@inproceedings{reimers-2019-sentence-bert,
|
141 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
142 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
143 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
144 |
+
month = "11",
|
145 |
+
year = "2019",
|
146 |
+
publisher = "Association for Computational Linguistics",
|
147 |
+
url = "https://arxiv.org/abs/1908.10084",
|
148 |
}
|
149 |
```
|
150 |
|