|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:2438 |
|
- loss:MatryoshkaLoss |
|
- loss:OnlineContrastiveLoss |
|
base_model: Alibaba-NLP/gte-modernbert-base |
|
|
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- cosine_accuracy_threshold |
|
- cosine_f1 |
|
- cosine_f1_threshold |
|
- cosine_precision |
|
- cosine_recall |
|
- cosine_ap |
|
- cosine_mcc |
|
model-index: |
|
- name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base |
|
results: |
|
- task: |
|
type: my-binary-classification |
|
name: My Binary Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.9159836065573771 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.8090976476669312 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.9216061185468452 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.8090976476669312 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.9305019305019305 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.9128787878787878 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.974188222191262 |
|
name: Cosine Ap |
|
- type: cosine_mcc |
|
value: 0.8312925398469787 |
|
name: Cosine Mcc |
|
--- |
|
|
|
# SentenceTransformer based on Alibaba-NLP/gte-modernbert-base |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision bc02f0a92d1b6dd82108036f6cb4b7b423fb7434 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- csv |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("waris-gill/ModernBert-Medical-v1") |
|
# Run inference |
|
sentences = [ |
|
'My rheumatologist said \'if a patient has lupus then prednisone doesn\'t work." why is that?', |
|
"I have lupus,my rheumatologist told me that prednisone doesn't work in my case. Could you educate me why? What are my chances? ", |
|
'Hello doctor, my grandmother has 3rd degree bed sore. What can be done to help?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### My Binary Classification |
|
|
|
* Evaluated with <code>scache.train.MyBinaryClassificationEvaluator</code> |
|
|
|
| Metric | Value | |
|
|:--------------------------|:-----------| |
|
| cosine_accuracy | 0.916 | |
|
| cosine_accuracy_threshold | 0.8091 | |
|
| cosine_f1 | 0.9216 | |
|
| cosine_f1_threshold | 0.8091 | |
|
| cosine_precision | 0.9305 | |
|
| cosine_recall | 0.9129 | |
|
| **cosine_ap** | **0.9742** | |
|
| cosine_mcc | 0.8313 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### csv |
|
|
|
* Dataset: csv |
|
* Size: 2,438 training samples |
|
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
|
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "OnlineContrastiveLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### csv |
|
|
|
* Dataset: csv |
|
* Size: 2,438 evaluation samples |
|
|
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 256 |
|
- `learning_rate`: 6.5383156211679e-05 |
|
- `max_grad_norm`: 0.5 |
|
- `num_train_epochs`: 1 |
|
- `lr_scheduler_type`: constant |
|
- `load_best_model_at_end`: True |
|
- `torch_compile`: True |
|
- `torch_compile_backend`: inductor |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 256 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 6.5383156211679e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 0.5 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: constant |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: True |
|
- `torch_compile_backend`: inductor |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | cosine_ap | |
|
|:----------:|:------:|:-------------:|:---------------:|:----------:| |
|
| 0.0323 | 1 | 4.4977 | - | - | |
|
| 0.0645 | 2 | 4.9952 | - | - | |
|
| 0.0968 | 3 | 2.9984 | - | - | |
|
| 0.1290 | 4 | 4.8052 | - | - | |
|
| 0.1613 | 5 | 4.0031 | - | - | |
|
| 0.1935 | 6 | 3.7682 | - | - | |
|
| 0.2258 | 7 | 4.0361 | - | - | |
|
| 0.2581 | 8 | 3.4003 | - | - | |
|
| 0.2903 | 9 | 1.1674 | - | - | |
|
| **0.3226** | **10** | **2.3826** | **14.3756** | **0.9742** | |
|
| 0.3548 | 11 | 3.8777 | - | - | |
|
| 0.3871 | 12 | 2.6367 | - | - | |
|
| 0.4194 | 13 | 2.5763 | - | - | |
|
| 0.4516 | 14 | 3.5591 | - | - | |
|
| 0.4839 | 15 | 2.3568 | - | - | |
|
| 0.5161 | 16 | 2.9432 | - | - | |
|
| 0.5484 | 17 | 2.746 | - | - | |
|
| 0.5806 | 18 | 3.647 | - | - | |
|
| 0.6129 | 19 | 3.0907 | - | - | |
|
| 0.6452 | 20 | 3.9776 | 12.4766 | 0.9771 | |
|
| 0.6774 | 21 | 3.4131 | - | - | |
|
| 0.7097 | 22 | 3.0084 | - | - | |
|
| 0.7419 | 23 | 2.7182 | - | - | |
|
| 0.7742 | 24 | 1.5211 | - | - | |
|
| 0.8065 | 25 | 1.8332 | - | - | |
|
| 0.8387 | 26 | 3.4883 | - | - | |
|
| 0.8710 | 27 | 2.0585 | - | - | |
|
| 0.9032 | 28 | 2.775 | - | - | |
|
| 0.9355 | 29 | 2.9137 | - | - | |
|
| 0.9677 | 30 | 2.4238 | 12.4805 | 0.9769 | |
|
| 1.0 | 31 | 1.2115 | 14.3756 | 0.9742 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.11.11 |
|
- Sentence Transformers: 3.4.1 |
|
- Transformers: 4.49.0 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.4.0 |
|
- Datasets: 3.3.2 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
|
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |