|
import streamlit as st
|
|
from PyPDF2 import PdfReader
|
|
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
import os
|
|
|
|
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
|
import google.generativeai as genai
|
|
from langchain_community.vectorstores import FAISS
|
|
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
from langchain.chains.question_answering import load_qa_chain
|
|
from langchain_core.prompts import PromptTemplate
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
|
|
|
|
if 'processed' not in st.session_state:
|
|
st.session_state.processed = False
|
|
|
|
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
|
|
|
@st.cache_data
|
|
def get_pdf_text(pdf_docs):
|
|
text=""
|
|
for pdf in pdf_docs:
|
|
pdf_reader = PdfReader(pdf)
|
|
for page in pdf_reader.pages:
|
|
text+= page.extract_text()
|
|
return text
|
|
|
|
@st.cache_data
|
|
def get_text_chunks(text):
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=500)
|
|
chunks = text_splitter.split_text(text)
|
|
return chunks
|
|
|
|
@st.cache_data
|
|
def get_vector_store(chunks):
|
|
embeddings=GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
vector_store = FAISS.from_texts(chunks, embedding=embeddings)
|
|
vector_store.save_local("faiss_index")
|
|
|
|
@st.cache_resource
|
|
def get_conversation_chain():
|
|
prompt_template = """
|
|
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
|
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
|
|
Context:\n {context}?\n
|
|
Question: \n{question}\n
|
|
|
|
Answer:
|
|
"""
|
|
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.4)
|
|
prompt=PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
|
chain=load_qa_chain(model,chain_type="stuff",prompt=prompt)
|
|
return chain
|
|
|
|
def process_pdfs(pdf_docs):
|
|
raw_text = get_pdf_text(pdf_docs)
|
|
text_chunks = get_text_chunks(raw_text)
|
|
get_vector_store(text_chunks)
|
|
st.session_state.processed = True
|
|
return "PDFs processed successfully!"
|
|
|
|
def user_input(user_question):
|
|
embeddings=GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
new_db=FAISS.load_local("faiss_index", embeddings,allow_dangerous_deserialization=True)
|
|
docs=new_db.similarity_search(user_question)
|
|
chain=get_conversation_chain()
|
|
response=chain(
|
|
{"input_documents":docs, "question":user_question},
|
|
return_only_outputs=True
|
|
)
|
|
return response["output_text"]
|
|
|
|
def main():
|
|
st.title("Chat with multiple PDFs")
|
|
|
|
tab1, tab2 = st.tabs(["Upload PDFs", "Chat"])
|
|
|
|
with tab1:
|
|
pdf_docs = st.file_uploader("Upload your PDF files", type=['pdf'], accept_multiple_files=True)
|
|
if st.button("Process"):
|
|
with st.spinner("Processing PDFs..."):
|
|
status = process_pdfs(pdf_docs)
|
|
st.success(status)
|
|
|
|
with tab2:
|
|
if not st.session_state.processed:
|
|
st.warning("Please upload and process PDFs first")
|
|
else:
|
|
user_question = st.text_input("Ask a question from the PDF files")
|
|
if st.button("Submit"):
|
|
with st.spinner("Generating response..."):
|
|
response = user_input(user_question)
|
|
st.write(response)
|
|
|
|
if __name__=="__main__":
|
|
main()
|
|
|
|
|