Upload 3 files
Browse files- .gitignore +5 -0
- app.py +100 -0
- requirements.txt +10 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.venv
|
2 |
+
venv/
|
3 |
+
|
4 |
+
.env
|
5 |
+
|
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
4 |
+
import os
|
5 |
+
|
6 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
7 |
+
import google.generativeai as genai
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
10 |
+
from langchain.chains.question_answering import load_qa_chain
|
11 |
+
from langchain_core.prompts import PromptTemplate
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
# Initialize session state
|
17 |
+
if 'processed' not in st.session_state:
|
18 |
+
st.session_state.processed = False
|
19 |
+
|
20 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
21 |
+
|
22 |
+
@st.cache_data
|
23 |
+
def get_pdf_text(pdf_docs):
|
24 |
+
text=""
|
25 |
+
for pdf in pdf_docs:
|
26 |
+
pdf_reader = PdfReader(pdf)
|
27 |
+
for page in pdf_reader.pages:
|
28 |
+
text+= page.extract_text()
|
29 |
+
return text
|
30 |
+
|
31 |
+
@st.cache_data
|
32 |
+
def get_text_chunks(text):
|
33 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=500)
|
34 |
+
chunks = text_splitter.split_text(text)
|
35 |
+
return chunks
|
36 |
+
|
37 |
+
@st.cache_data
|
38 |
+
def get_vector_store(chunks):
|
39 |
+
embeddings=GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
40 |
+
vector_store = FAISS.from_texts(chunks, embedding=embeddings)
|
41 |
+
vector_store.save_local("faiss_index")
|
42 |
+
|
43 |
+
@st.cache_resource
|
44 |
+
def get_conversation_chain():
|
45 |
+
prompt_template = """
|
46 |
+
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
|
47 |
+
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
|
48 |
+
Context:\n {context}?\n
|
49 |
+
Question: \n{question}\n
|
50 |
+
|
51 |
+
Answer:
|
52 |
+
"""
|
53 |
+
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.4)
|
54 |
+
prompt=PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
55 |
+
chain=load_qa_chain(model,chain_type="stuff",prompt=prompt)
|
56 |
+
return chain
|
57 |
+
|
58 |
+
def process_pdfs(pdf_docs):
|
59 |
+
raw_text = get_pdf_text(pdf_docs)
|
60 |
+
text_chunks = get_text_chunks(raw_text)
|
61 |
+
get_vector_store(text_chunks)
|
62 |
+
st.session_state.processed = True
|
63 |
+
return "PDFs processed successfully!"
|
64 |
+
|
65 |
+
def user_input(user_question):
|
66 |
+
embeddings=GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
67 |
+
new_db=FAISS.load_local("faiss_index", embeddings,allow_dangerous_deserialization=True)
|
68 |
+
docs=new_db.similarity_search(user_question)
|
69 |
+
chain=get_conversation_chain()
|
70 |
+
response=chain(
|
71 |
+
{"input_documents":docs, "question":user_question},
|
72 |
+
return_only_outputs=True
|
73 |
+
)
|
74 |
+
return response["output_text"]
|
75 |
+
|
76 |
+
def main():
|
77 |
+
st.title("Chat with multiple PDFs")
|
78 |
+
|
79 |
+
tab1, tab2 = st.tabs(["Upload PDFs", "Chat"])
|
80 |
+
|
81 |
+
with tab1:
|
82 |
+
pdf_docs = st.file_uploader("Upload your PDF files", type=['pdf'], accept_multiple_files=True)
|
83 |
+
if st.button("Process"):
|
84 |
+
with st.spinner("Processing PDFs..."):
|
85 |
+
status = process_pdfs(pdf_docs)
|
86 |
+
st.success(status)
|
87 |
+
|
88 |
+
with tab2:
|
89 |
+
if not st.session_state.processed:
|
90 |
+
st.warning("Please upload and process PDFs first")
|
91 |
+
else:
|
92 |
+
user_question = st.text_input("Ask a question from the PDF files")
|
93 |
+
if st.button("Submit"):
|
94 |
+
with st.spinner("Generating response..."):
|
95 |
+
response = user_input(user_question)
|
96 |
+
st.write(response)
|
97 |
+
|
98 |
+
if __name__=="__main__":
|
99 |
+
main()
|
100 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
google-generativeai
|
3 |
+
python-dotenv
|
4 |
+
langchain
|
5 |
+
PyPDF2
|
6 |
+
faiss-cpu
|
7 |
+
ipykernel
|
8 |
+
langchain-google-genai
|
9 |
+
langchain-text-splitters
|
10 |
+
langchain-community
|