Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Malicious URL Detection Model
|
2 |
|
3 |
> A fine-tuned **BERT-LoRA** model for detecting malicious URLs, including phishing, malware, and defacement threats.
|
@@ -8,10 +19,10 @@ This model is a **fine-tuned BERT-based classifier** designed to detect **malici
|
|
8 |
|
9 |
The model classifies URLs into **four categories**:
|
10 |
|
11 |
-
-
|
12 |
-
-
|
13 |
-
-
|
14 |
-
-
|
15 |
|
16 |
It achieves **98% validation accuracy** and an **F1-score of 0.965**, ensuring robust detection capabilities.
|
17 |
|
@@ -21,11 +32,16 @@ It achieves **98% validation accuracy** and an **F1-score of 0.965**, ensuring r
|
|
21 |
|
22 |
### Use Cases
|
23 |
|
24 |
-
|
|
|
|
|
|
|
25 |
|
26 |
### Limitations
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
---
|
31 |
|
@@ -104,17 +120,17 @@ print(f"Prediction: {label_map[prediction]}")
|
|
104 |
|
105 |
## Deployment Options
|
106 |
|
107 |
-
###
|
108 |
|
109 |
- Deployed on **Streamlit Cloud, AWS, or Google Cloud**.
|
110 |
- Provides **real-time URL analysis** with a user-friendly interface.
|
111 |
|
112 |
-
###
|
113 |
|
114 |
- **Real-time scanning** of visited web pages.
|
115 |
- **Dynamic threat alerts** with confidence scores.
|
116 |
|
117 |
-
###
|
118 |
|
119 |
- REST API for bulk URL analysis.
|
120 |
- Supports **Security Operations Centers (SOC)**.
|
@@ -133,17 +149,17 @@ print(f"Prediction: {label_map[prediction]}")
|
|
133 |
|
134 |
### Data Source
|
135 |
|
136 |
-
Dataset sourced from **Kaggle Malicious URLs Dataset
|
|
|
137 |
|
138 |
### BibTeX Citation
|
139 |
|
140 |
```
|
141 |
@article{maliciousurl2025,
|
142 |
-
author = {
|
143 |
title = {Fine-Tuned BERT for Malicious URL Detection},
|
144 |
year = {2025},
|
145 |
-
|
146 |
-
url = {https://your-research-paper-link.com}
|
147 |
}
|
148 |
```
|
149 |
|
@@ -151,7 +167,7 @@ Dataset sourced from **Kaggle Malicious URLs Dataset**:π [Dataset Link](https
|
|
151 |
|
152 |
## Future Work
|
153 |
|
154 |
-
|
155 |
|
156 |
- **Better phishing URL detection** via adversarial training.
|
157 |
- **Deploying as a real-time browser extension.**
|
@@ -159,44 +175,3 @@ Dataset sourced from **Kaggle Malicious URLs Dataset**:π [Dataset Link](https
|
|
159 |
- **Expanding detection to identify zero-day threats.**
|
160 |
|
161 |
---
|
162 |
-
|
163 |
-
## Uploading to Hugging Face
|
164 |
-
|
165 |
-
To upload this model to **Hugging Face**, follow these steps:
|
166 |
-
|
167 |
-
```bash
|
168 |
-
pip install transformers huggingface_hub
|
169 |
-
```
|
170 |
-
|
171 |
-
```python
|
172 |
-
from huggingface_hub import create_repo
|
173 |
-
create_repo("your-huggingface-model-name")
|
174 |
-
```
|
175 |
-
|
176 |
-
```python
|
177 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
178 |
-
from huggingface_hub import HfApi
|
179 |
-
|
180 |
-
model_name = "your-huggingface-model-name"
|
181 |
-
model = AutoModelForSequenceClassification.from_pretrained("your-local-model-directory")
|
182 |
-
tokenizer = AutoTokenizer.from_pretrained("your-local-model-directory")
|
183 |
-
|
184 |
-
# Save & Push Model
|
185 |
-
model.save_pretrained(f"{model_name}")
|
186 |
-
tokenizer.save_pretrained(f"{model_name}")
|
187 |
-
|
188 |
-
api = HfApi()
|
189 |
-
api.upload_folder(
|
190 |
-
folder_path=f"{model_name}",
|
191 |
-
repo_id=f"your-huggingface-username/{model_name}",
|
192 |
-
repo_type="model",
|
193 |
-
)
|
194 |
-
```
|
195 |
-
|
196 |
-
---
|
197 |
-
|
198 |
-
## Conclusion
|
199 |
-
|
200 |
-
The **Malicious URL Detection Model** provides **state-of-the-art** accuracy for detecting **phishing, malware, and defacement threats**. It is optimized for **real-time cybersecurity applications** and **deployed using Streamlit**.
|
201 |
-
|
202 |
-
β
**Final F1-score: 0.965**β
**Optimized for real-time detection**β
**Ready for deployment via API & browser extension**
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- cybersecurity
|
5 |
+
- malicious-url-detection
|
6 |
+
- bert
|
7 |
+
- transformers
|
8 |
+
- phishing-detection
|
9 |
+
license: apache-2.0
|
10 |
+
---
|
11 |
+
|
12 |
# Malicious URL Detection Model
|
13 |
|
14 |
> A fine-tuned **BERT-LoRA** model for detecting malicious URLs, including phishing, malware, and defacement threats.
|
|
|
19 |
|
20 |
The model classifies URLs into **four categories**:
|
21 |
|
22 |
+
- **Benign**
|
23 |
+
- **Defacement**
|
24 |
+
- **Phishing**
|
25 |
+
- **Malware**
|
26 |
|
27 |
It achieves **98% validation accuracy** and an **F1-score of 0.965**, ensuring robust detection capabilities.
|
28 |
|
|
|
32 |
|
33 |
### Use Cases
|
34 |
|
35 |
+
- Real-time URL classification for cybersecurity tools
|
36 |
+
- Phishing and malware detection for online safety
|
37 |
+
- Integration into browser extensions for instant threat alerts
|
38 |
+
- Security monitoring for SOC (Security Operations Centers)
|
39 |
|
40 |
### Limitations
|
41 |
|
42 |
+
- May **misclassify short or obfuscated URLs**
|
43 |
+
- Performance may degrade with **dynamic domain structures**
|
44 |
+
- Requires **frequent retraining** to adapt to evolving threats
|
45 |
|
46 |
---
|
47 |
|
|
|
120 |
|
121 |
## Deployment Options
|
122 |
|
123 |
+
### Streamlit Web App
|
124 |
|
125 |
- Deployed on **Streamlit Cloud, AWS, or Google Cloud**.
|
126 |
- Provides **real-time URL analysis** with a user-friendly interface.
|
127 |
|
128 |
+
### Browser Extension (Planned)
|
129 |
|
130 |
- **Real-time scanning** of visited web pages.
|
131 |
- **Dynamic threat alerts** with confidence scores.
|
132 |
|
133 |
+
### API Integration
|
134 |
|
135 |
- REST API for bulk URL analysis.
|
136 |
- Supports **Security Operations Centers (SOC)**.
|
|
|
149 |
|
150 |
### Data Source
|
151 |
|
152 |
+
Dataset sourced from **Kaggle Malicious URLs Dataset**:
|
153 |
+
π [Dataset Link](https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset)
|
154 |
|
155 |
### BibTeX Citation
|
156 |
|
157 |
```
|
158 |
@article{maliciousurl2025,
|
159 |
+
author = {r3ddkahili},
|
160 |
title = {Fine-Tuned BERT for Malicious URL Detection},
|
161 |
year = {2025},
|
162 |
+
institution = {Western Sydney University}
|
|
|
163 |
}
|
164 |
```
|
165 |
|
|
|
167 |
|
168 |
## Future Work
|
169 |
|
170 |
+
**Improvements Planned:**
|
171 |
|
172 |
- **Better phishing URL detection** via adversarial training.
|
173 |
- **Deploying as a real-time browser extension.**
|
|
|
175 |
- **Expanding detection to identify zero-day threats.**
|
176 |
|
177 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|