quancute commited on
Commit
f6bc069
·
verified ·
1 Parent(s): cf9e5ff

End of training

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/mdeberta-v3-base
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - precision
11
+ - recall
12
+ model-index:
13
+ - name: mdeberta-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # mdeberta-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov
21
+
22
+ This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.0975
25
+ - Accuracy: 0.9820
26
+ - F1: 0.4359
27
+ - Precision: 0.4857
28
+ - Recall: 0.3953
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2.5e-05
48
+ - train_batch_size: 4
49
+ - eval_batch_size: 4
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 40
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
58
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
59
+ | No log | 1.0 | 250 | 0.0903 | 0.9825 | 0.0 | 0.0 | 0.0 |
60
+ | 0.1391 | 2.0 | 500 | 0.0941 | 0.9825 | 0.0 | 0.0 | 0.0 |
61
+ | 0.1391 | 3.0 | 750 | 0.0933 | 0.9825 | 0.0 | 0.0 | 0.0 |
62
+ | 0.075 | 4.0 | 1000 | 0.0924 | 0.9825 | 0.0 | 0.0 | 0.0 |
63
+ | 0.075 | 5.0 | 1250 | 0.0894 | 0.9825 | 0.0 | 0.0 | 0.0 |
64
+ | 0.0634 | 6.0 | 1500 | 0.0870 | 0.9825 | 0.0851 | 0.5 | 0.0465 |
65
+ | 0.0634 | 7.0 | 1750 | 0.0846 | 0.9820 | 0.0833 | 0.4 | 0.0465 |
66
+ | 0.0508 | 8.0 | 2000 | 0.0799 | 0.9825 | 0.1224 | 0.5 | 0.0698 |
67
+ | 0.0508 | 9.0 | 2250 | 0.0794 | 0.9829 | 0.125 | 0.6 | 0.0698 |
68
+ | 0.0394 | 10.0 | 2500 | 0.0793 | 0.9800 | 0.0755 | 0.2 | 0.0465 |
69
+ | 0.0394 | 11.0 | 2750 | 0.0801 | 0.9808 | 0.2034 | 0.375 | 0.1395 |
70
+ | 0.0302 | 12.0 | 3000 | 0.0825 | 0.9812 | 0.2069 | 0.4 | 0.1395 |
71
+ | 0.0302 | 13.0 | 3250 | 0.0763 | 0.9829 | 0.2759 | 0.5333 | 0.1860 |
72
+ | 0.0232 | 14.0 | 3500 | 0.0755 | 0.9833 | 0.3692 | 0.5455 | 0.2791 |
73
+ | 0.0232 | 15.0 | 3750 | 0.0799 | 0.9829 | 0.3226 | 0.5263 | 0.2326 |
74
+ | 0.0176 | 16.0 | 4000 | 0.0785 | 0.9833 | 0.3692 | 0.5455 | 0.2791 |
75
+ | 0.0176 | 17.0 | 4250 | 0.0776 | 0.9825 | 0.3768 | 0.5 | 0.3023 |
76
+ | 0.0132 | 18.0 | 4500 | 0.0803 | 0.9833 | 0.3881 | 0.5417 | 0.3023 |
77
+ | 0.0132 | 19.0 | 4750 | 0.0826 | 0.9812 | 0.3611 | 0.4483 | 0.3023 |
78
+ | 0.0106 | 20.0 | 5000 | 0.0787 | 0.9825 | 0.4110 | 0.5 | 0.3488 |
79
+ | 0.0106 | 21.0 | 5250 | 0.0879 | 0.9816 | 0.3478 | 0.4615 | 0.2791 |
80
+ | 0.0085 | 22.0 | 5500 | 0.0848 | 0.9816 | 0.4156 | 0.4706 | 0.3721 |
81
+ | 0.0085 | 23.0 | 5750 | 0.0818 | 0.9825 | 0.4267 | 0.5 | 0.3721 |
82
+ | 0.0068 | 24.0 | 6000 | 0.0816 | 0.9833 | 0.4533 | 0.5312 | 0.3953 |
83
+ | 0.0068 | 25.0 | 6250 | 0.0819 | 0.9825 | 0.4267 | 0.5 | 0.3721 |
84
+ | 0.0056 | 26.0 | 6500 | 0.0848 | 0.9833 | 0.4533 | 0.5312 | 0.3953 |
85
+ | 0.0056 | 27.0 | 6750 | 0.0872 | 0.9833 | 0.4533 | 0.5312 | 0.3953 |
86
+ | 0.0049 | 28.0 | 7000 | 0.0844 | 0.9837 | 0.4595 | 0.5484 | 0.3953 |
87
+ | 0.0049 | 29.0 | 7250 | 0.0881 | 0.9820 | 0.4211 | 0.4848 | 0.3721 |
88
+ | 0.0042 | 30.0 | 7500 | 0.0925 | 0.9820 | 0.45 | 0.4865 | 0.4186 |
89
+ | 0.0042 | 31.0 | 7750 | 0.0924 | 0.9825 | 0.4267 | 0.5 | 0.3721 |
90
+ | 0.0038 | 32.0 | 8000 | 0.0938 | 0.9833 | 0.4675 | 0.5294 | 0.4186 |
91
+ | 0.0038 | 33.0 | 8250 | 0.0939 | 0.9825 | 0.4416 | 0.5 | 0.3953 |
92
+ | 0.0032 | 34.0 | 8500 | 0.0941 | 0.9833 | 0.4384 | 0.5333 | 0.3721 |
93
+ | 0.0032 | 35.0 | 8750 | 0.0942 | 0.9833 | 0.4675 | 0.5294 | 0.4186 |
94
+ | 0.0029 | 36.0 | 9000 | 0.0949 | 0.9820 | 0.4359 | 0.4857 | 0.3953 |
95
+ | 0.0029 | 37.0 | 9250 | 0.0961 | 0.9820 | 0.4359 | 0.4857 | 0.3953 |
96
+ | 0.0027 | 38.0 | 9500 | 0.0980 | 0.9820 | 0.4359 | 0.4857 | 0.3953 |
97
+ | 0.0027 | 39.0 | 9750 | 0.0972 | 0.9820 | 0.4359 | 0.4857 | 0.3953 |
98
+ | 0.0026 | 40.0 | 10000 | 0.0975 | 0.9820 | 0.4359 | 0.4857 | 0.3953 |
99
+
100
+
101
+ ### Framework versions
102
+
103
+ - Transformers 4.44.2
104
+ - Pytorch 2.4.1+cu121
105
+ - Datasets 3.1.0
106
+ - Tokenizers 0.19.1