End of training
Browse files
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: microsoft/mdeberta-v3-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
model-index:
|
13 |
+
- name: mdeberta-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# mdeberta-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.0975
|
25 |
+
- Accuracy: 0.9820
|
26 |
+
- F1: 0.4359
|
27 |
+
- Precision: 0.4857
|
28 |
+
- Recall: 0.3953
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 2.5e-05
|
48 |
+
- train_batch_size: 4
|
49 |
+
- eval_batch_size: 4
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 40
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
59 |
+
| No log | 1.0 | 250 | 0.0903 | 0.9825 | 0.0 | 0.0 | 0.0 |
|
60 |
+
| 0.1391 | 2.0 | 500 | 0.0941 | 0.9825 | 0.0 | 0.0 | 0.0 |
|
61 |
+
| 0.1391 | 3.0 | 750 | 0.0933 | 0.9825 | 0.0 | 0.0 | 0.0 |
|
62 |
+
| 0.075 | 4.0 | 1000 | 0.0924 | 0.9825 | 0.0 | 0.0 | 0.0 |
|
63 |
+
| 0.075 | 5.0 | 1250 | 0.0894 | 0.9825 | 0.0 | 0.0 | 0.0 |
|
64 |
+
| 0.0634 | 6.0 | 1500 | 0.0870 | 0.9825 | 0.0851 | 0.5 | 0.0465 |
|
65 |
+
| 0.0634 | 7.0 | 1750 | 0.0846 | 0.9820 | 0.0833 | 0.4 | 0.0465 |
|
66 |
+
| 0.0508 | 8.0 | 2000 | 0.0799 | 0.9825 | 0.1224 | 0.5 | 0.0698 |
|
67 |
+
| 0.0508 | 9.0 | 2250 | 0.0794 | 0.9829 | 0.125 | 0.6 | 0.0698 |
|
68 |
+
| 0.0394 | 10.0 | 2500 | 0.0793 | 0.9800 | 0.0755 | 0.2 | 0.0465 |
|
69 |
+
| 0.0394 | 11.0 | 2750 | 0.0801 | 0.9808 | 0.2034 | 0.375 | 0.1395 |
|
70 |
+
| 0.0302 | 12.0 | 3000 | 0.0825 | 0.9812 | 0.2069 | 0.4 | 0.1395 |
|
71 |
+
| 0.0302 | 13.0 | 3250 | 0.0763 | 0.9829 | 0.2759 | 0.5333 | 0.1860 |
|
72 |
+
| 0.0232 | 14.0 | 3500 | 0.0755 | 0.9833 | 0.3692 | 0.5455 | 0.2791 |
|
73 |
+
| 0.0232 | 15.0 | 3750 | 0.0799 | 0.9829 | 0.3226 | 0.5263 | 0.2326 |
|
74 |
+
| 0.0176 | 16.0 | 4000 | 0.0785 | 0.9833 | 0.3692 | 0.5455 | 0.2791 |
|
75 |
+
| 0.0176 | 17.0 | 4250 | 0.0776 | 0.9825 | 0.3768 | 0.5 | 0.3023 |
|
76 |
+
| 0.0132 | 18.0 | 4500 | 0.0803 | 0.9833 | 0.3881 | 0.5417 | 0.3023 |
|
77 |
+
| 0.0132 | 19.0 | 4750 | 0.0826 | 0.9812 | 0.3611 | 0.4483 | 0.3023 |
|
78 |
+
| 0.0106 | 20.0 | 5000 | 0.0787 | 0.9825 | 0.4110 | 0.5 | 0.3488 |
|
79 |
+
| 0.0106 | 21.0 | 5250 | 0.0879 | 0.9816 | 0.3478 | 0.4615 | 0.2791 |
|
80 |
+
| 0.0085 | 22.0 | 5500 | 0.0848 | 0.9816 | 0.4156 | 0.4706 | 0.3721 |
|
81 |
+
| 0.0085 | 23.0 | 5750 | 0.0818 | 0.9825 | 0.4267 | 0.5 | 0.3721 |
|
82 |
+
| 0.0068 | 24.0 | 6000 | 0.0816 | 0.9833 | 0.4533 | 0.5312 | 0.3953 |
|
83 |
+
| 0.0068 | 25.0 | 6250 | 0.0819 | 0.9825 | 0.4267 | 0.5 | 0.3721 |
|
84 |
+
| 0.0056 | 26.0 | 6500 | 0.0848 | 0.9833 | 0.4533 | 0.5312 | 0.3953 |
|
85 |
+
| 0.0056 | 27.0 | 6750 | 0.0872 | 0.9833 | 0.4533 | 0.5312 | 0.3953 |
|
86 |
+
| 0.0049 | 28.0 | 7000 | 0.0844 | 0.9837 | 0.4595 | 0.5484 | 0.3953 |
|
87 |
+
| 0.0049 | 29.0 | 7250 | 0.0881 | 0.9820 | 0.4211 | 0.4848 | 0.3721 |
|
88 |
+
| 0.0042 | 30.0 | 7500 | 0.0925 | 0.9820 | 0.45 | 0.4865 | 0.4186 |
|
89 |
+
| 0.0042 | 31.0 | 7750 | 0.0924 | 0.9825 | 0.4267 | 0.5 | 0.3721 |
|
90 |
+
| 0.0038 | 32.0 | 8000 | 0.0938 | 0.9833 | 0.4675 | 0.5294 | 0.4186 |
|
91 |
+
| 0.0038 | 33.0 | 8250 | 0.0939 | 0.9825 | 0.4416 | 0.5 | 0.3953 |
|
92 |
+
| 0.0032 | 34.0 | 8500 | 0.0941 | 0.9833 | 0.4384 | 0.5333 | 0.3721 |
|
93 |
+
| 0.0032 | 35.0 | 8750 | 0.0942 | 0.9833 | 0.4675 | 0.5294 | 0.4186 |
|
94 |
+
| 0.0029 | 36.0 | 9000 | 0.0949 | 0.9820 | 0.4359 | 0.4857 | 0.3953 |
|
95 |
+
| 0.0029 | 37.0 | 9250 | 0.0961 | 0.9820 | 0.4359 | 0.4857 | 0.3953 |
|
96 |
+
| 0.0027 | 38.0 | 9500 | 0.0980 | 0.9820 | 0.4359 | 0.4857 | 0.3953 |
|
97 |
+
| 0.0027 | 39.0 | 9750 | 0.0972 | 0.9820 | 0.4359 | 0.4857 | 0.3953 |
|
98 |
+
| 0.0026 | 40.0 | 10000 | 0.0975 | 0.9820 | 0.4359 | 0.4857 | 0.3953 |
|
99 |
+
|
100 |
+
|
101 |
+
### Framework versions
|
102 |
+
|
103 |
+
- Transformers 4.44.2
|
104 |
+
- Pytorch 2.4.1+cu121
|
105 |
+
- Datasets 3.1.0
|
106 |
+
- Tokenizers 0.19.1
|