mdeberta-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0975
- Accuracy: 0.9820
- F1: 0.4359
- Precision: 0.4857
- Recall: 0.3953
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 250 | 0.0903 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.1391 | 2.0 | 500 | 0.0941 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.1391 | 3.0 | 750 | 0.0933 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.075 | 4.0 | 1000 | 0.0924 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.075 | 5.0 | 1250 | 0.0894 | 0.9825 | 0.0 | 0.0 | 0.0 |
0.0634 | 6.0 | 1500 | 0.0870 | 0.9825 | 0.0851 | 0.5 | 0.0465 |
0.0634 | 7.0 | 1750 | 0.0846 | 0.9820 | 0.0833 | 0.4 | 0.0465 |
0.0508 | 8.0 | 2000 | 0.0799 | 0.9825 | 0.1224 | 0.5 | 0.0698 |
0.0508 | 9.0 | 2250 | 0.0794 | 0.9829 | 0.125 | 0.6 | 0.0698 |
0.0394 | 10.0 | 2500 | 0.0793 | 0.9800 | 0.0755 | 0.2 | 0.0465 |
0.0394 | 11.0 | 2750 | 0.0801 | 0.9808 | 0.2034 | 0.375 | 0.1395 |
0.0302 | 12.0 | 3000 | 0.0825 | 0.9812 | 0.2069 | 0.4 | 0.1395 |
0.0302 | 13.0 | 3250 | 0.0763 | 0.9829 | 0.2759 | 0.5333 | 0.1860 |
0.0232 | 14.0 | 3500 | 0.0755 | 0.9833 | 0.3692 | 0.5455 | 0.2791 |
0.0232 | 15.0 | 3750 | 0.0799 | 0.9829 | 0.3226 | 0.5263 | 0.2326 |
0.0176 | 16.0 | 4000 | 0.0785 | 0.9833 | 0.3692 | 0.5455 | 0.2791 |
0.0176 | 17.0 | 4250 | 0.0776 | 0.9825 | 0.3768 | 0.5 | 0.3023 |
0.0132 | 18.0 | 4500 | 0.0803 | 0.9833 | 0.3881 | 0.5417 | 0.3023 |
0.0132 | 19.0 | 4750 | 0.0826 | 0.9812 | 0.3611 | 0.4483 | 0.3023 |
0.0106 | 20.0 | 5000 | 0.0787 | 0.9825 | 0.4110 | 0.5 | 0.3488 |
0.0106 | 21.0 | 5250 | 0.0879 | 0.9816 | 0.3478 | 0.4615 | 0.2791 |
0.0085 | 22.0 | 5500 | 0.0848 | 0.9816 | 0.4156 | 0.4706 | 0.3721 |
0.0085 | 23.0 | 5750 | 0.0818 | 0.9825 | 0.4267 | 0.5 | 0.3721 |
0.0068 | 24.0 | 6000 | 0.0816 | 0.9833 | 0.4533 | 0.5312 | 0.3953 |
0.0068 | 25.0 | 6250 | 0.0819 | 0.9825 | 0.4267 | 0.5 | 0.3721 |
0.0056 | 26.0 | 6500 | 0.0848 | 0.9833 | 0.4533 | 0.5312 | 0.3953 |
0.0056 | 27.0 | 6750 | 0.0872 | 0.9833 | 0.4533 | 0.5312 | 0.3953 |
0.0049 | 28.0 | 7000 | 0.0844 | 0.9837 | 0.4595 | 0.5484 | 0.3953 |
0.0049 | 29.0 | 7250 | 0.0881 | 0.9820 | 0.4211 | 0.4848 | 0.3721 |
0.0042 | 30.0 | 7500 | 0.0925 | 0.9820 | 0.45 | 0.4865 | 0.4186 |
0.0042 | 31.0 | 7750 | 0.0924 | 0.9825 | 0.4267 | 0.5 | 0.3721 |
0.0038 | 32.0 | 8000 | 0.0938 | 0.9833 | 0.4675 | 0.5294 | 0.4186 |
0.0038 | 33.0 | 8250 | 0.0939 | 0.9825 | 0.4416 | 0.5 | 0.3953 |
0.0032 | 34.0 | 8500 | 0.0941 | 0.9833 | 0.4384 | 0.5333 | 0.3721 |
0.0032 | 35.0 | 8750 | 0.0942 | 0.9833 | 0.4675 | 0.5294 | 0.4186 |
0.0029 | 36.0 | 9000 | 0.0949 | 0.9820 | 0.4359 | 0.4857 | 0.3953 |
0.0029 | 37.0 | 9250 | 0.0961 | 0.9820 | 0.4359 | 0.4857 | 0.3953 |
0.0027 | 38.0 | 9500 | 0.0980 | 0.9820 | 0.4359 | 0.4857 | 0.3953 |
0.0027 | 39.0 | 9750 | 0.0972 | 0.9820 | 0.4359 | 0.4857 | 0.3953 |
0.0026 | 40.0 | 10000 | 0.0975 | 0.9820 | 0.4359 | 0.4857 | 0.3953 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for quancute/mdeberta-ner-ghtk-hirach_NER-first_1000_data-3090-15Nov
Base model
microsoft/mdeberta-v3-base