|
--- |
|
library_name: pytorch |
|
license: agpl-3.0 |
|
tags: |
|
- real_time |
|
- quantized |
|
- android |
|
pipeline_tag: object-detection |
|
|
|
--- |
|
|
|
 |
|
|
|
# YOLOv8-Detection-Quantized: Optimized for Mobile Deployment |
|
## Quantized real-time object detection optimized for mobile and edge by Ultralytics |
|
|
|
|
|
Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the COCO dataset. |
|
|
|
This model is an implementation of YOLOv8-Detection-Quantized found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect). |
|
|
|
|
|
More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov8_det_quantized). |
|
|
|
### Model Details |
|
|
|
- **Model Type:** Object detection |
|
- **Model Stats:** |
|
- Model checkpoint: YOLOv8-N |
|
- Input resolution: 640x640 |
|
- Number of parameters: 3.18M |
|
- Model size: 3.26 MB |
|
- Precision: w8a8 (8-bit weights, 8-bit activations) |
|
|
|
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
|
|---|---|---|---|---|---|---|---|---| |
|
| YOLOv8-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.508 ms | 0 - 14 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.56 ms | 1 - 4 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 9.207 ms | 1 - 17 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.998 ms | 0 - 33 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.016 ms | 1 - 20 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 6.693 ms | 1 - 44 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.917 ms | 0 - 25 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.053 ms | 1 - 24 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 7.208 ms | 1 - 37 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | SA7255P ADP | SA7255P | TFLITE | 10.965 ms | 0 - 20 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | SA7255P ADP | SA7255P | QNN | 10.902 ms | 1 - 11 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.513 ms | 0 - 13 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.575 ms | 1 - 3 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | SA8295P ADP | SA8295P | TFLITE | 2.356 ms | 0 - 24 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | SA8295P ADP | SA8295P | QNN | 2.328 ms | 0 - 18 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.508 ms | 0 - 13 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.562 ms | 1 - 3 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | SA8775P ADP | SA8775P | TFLITE | 2.283 ms | 0 - 20 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | SA8775P ADP | SA8775P | QNN | 2.325 ms | 1 - 11 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 3.708 ms | 0 - 30 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 5.382 ms | 1 - 19 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 50.333 ms | 2 - 11 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 10.965 ms | 0 - 20 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 10.902 ms | 1 - 11 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.508 ms | 0 - 14 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.566 ms | 1 - 4 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 2.283 ms | 0 - 20 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 2.325 ms | 1 - 11 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.791 ms | 0 - 35 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 2.075 ms | 1 - 35 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.774 ms | 1 - 1 MB | INT8 | NPU | -- | |
|
| YOLOv8-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.96 ms | 2 - 2 MB | INT8 | NPU | -- | |
|
|
|
|
|
|
|
|
|
## License |
|
* The license for the original implementation of YOLOv8-Detection-Quantized can be found |
|
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE). |
|
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) |
|
|
|
|
|
|
|
## References |
|
* [Ultralytics YOLOv8 Docs: Object Detection](https://docs.ultralytics.com/tasks/detect/) |
|
* [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect) |
|
|
|
|
|
|
|
## Community |
|
* Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI. |
|
* For questions or feedback please [reach out to us](mailto:[email protected]). |
|
|
|
## Usage and Limitations |
|
|
|
Model may not be used for or in connection with any of the following applications: |
|
|
|
- Accessing essential private and public services and benefits; |
|
- Administration of justice and democratic processes; |
|
- Assessing or recognizing the emotional state of a person; |
|
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics; |
|
- Education and vocational training; |
|
- Employment and workers management; |
|
- Exploitation of the vulnerabilities of persons resulting in harmful behavior; |
|
- General purpose social scoring; |
|
- Law enforcement; |
|
- Management and operation of critical infrastructure; |
|
- Migration, asylum and border control management; |
|
- Predictive policing; |
|
- Real-time remote biometric identification in public spaces; |
|
- Recommender systems of social media platforms; |
|
- Scraping of facial images (from the internet or otherwise); and/or |
|
- Subliminal manipulation |
|
|