qaihm-bot's picture
Upload README.md with huggingface_hub
f8225f5 verified
|
raw
history blame
9.46 kB
---
library_name: pytorch
license: apache-2.0
pipeline_tag: image-segmentation
tags:
- foundation
- android
---
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/sam/web-assets/model_demo.png)
# Segment-Anything-Model: Optimized for Mobile Deployment
## High-quality segmentation mask generation around any object in an image with simple input prompt
Transformer based encoder-decoder where prompts specify what to segment in an image thereby allowing segmentation without the need for additional training. The image encoder generates embeddings and the lightweight decoder operates on the embeddings for point and mask based image segmentation.
This model is an implementation of Segment-Anything-Model found [here](https://github.com/facebookresearch/segment-anything).
This repository provides scripts to run Segment-Anything-Model on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/sam).
### Model Details
- **Model Type:** Semantic segmentation
- **Model Stats:**
- Model checkpoint: vit_l
- Input resolution: 720p (720x1280)
- Number of parameters (SAMDecoder): 5.11M
- Model size (SAMDecoder): 19.6 MB
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
| ---|---|---|---|---|---|---|---|
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 29.972 ms | 4 - 12 MB | FP16 | NPU | [SAMDecoder.tflite](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMDecoder.tflite)
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 11293.293 ms | 38 - 215 MB | FP32 | CPU | [SAMEncoder.tflite](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoder.tflite)
## Installation
This model can be installed as a Python package via pip.
```bash
pip install "qai-hub-models[sam]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.sam.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.sam.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.sam.export
```
```
Profile Job summary of SAMDecoder
--------------------------------------------------
Device: SA8255 (Proxy) (13)
Estimated Inference Time: 29.91 ms
Estimated Peak Memory Range: 3.82-11.20 MB
Compute Units: NPU (337) | Total (337)
Profile Job summary of SAMEncoder
--------------------------------------------------
Device: SA8255 (Proxy) (13)
Estimated Inference Time: 11339.80 ms
Estimated Peak Memory Range: 123.86-127.24 MB
Compute Units: GPU (36),CPU (782) | Total (818)
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/sam/qai_hub_models/models/Segment-Anything-Model/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.sam import SAMDecoder,SAMEncoder
# Load the model
get_sam_decoder()_model = SAMDecoder.from_pretrained()
get_sam_encoder()_model = SAMEncoder.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S23")
# Trace model
get_sam_decoder()_input_shape = get_sam_decoder()_model.get_input_spec()
get_sam_decoder()_sample_inputs = get_sam_decoder()_model.sample_inputs()
traced_get_sam_decoder()_model = torch.jit.trace(get_sam_decoder()_model, [torch.tensor(data[0]) for _, data in get_sam_decoder()_sample_inputs.items()])
# Compile model on a specific device
get_sam_decoder()_compile_job = hub.submit_compile_job(
model=traced_get_sam_decoder()_model ,
device=device,
input_specs=get_sam_decoder()_model.get_input_spec(),
)
# Get target model to run on-device
get_sam_decoder()_target_model = get_sam_decoder()_compile_job.get_target_model()
# Trace model
get_sam_encoder()_input_shape = get_sam_encoder()_model.get_input_spec()
get_sam_encoder()_sample_inputs = get_sam_encoder()_model.sample_inputs()
traced_get_sam_encoder()_model = torch.jit.trace(get_sam_encoder()_model, [torch.tensor(data[0]) for _, data in get_sam_encoder()_sample_inputs.items()])
# Compile model on a specific device
get_sam_encoder()_compile_job = hub.submit_compile_job(
model=traced_get_sam_encoder()_model ,
device=device,
input_specs=get_sam_encoder()_model.get_input_spec(),
)
# Get target model to run on-device
get_sam_encoder()_target_model = get_sam_encoder()_compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
get_sam_decoder()_profile_job = hub.submit_profile_job(
model=get_sam_decoder()_target_model,
device=device,
)
get_sam_encoder()_profile_job = hub.submit_profile_job(
model=get_sam_encoder()_target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
get_sam_decoder()_input_data = get_sam_decoder()_model.sample_inputs()
get_sam_decoder()_inference_job = hub.submit_inference_job(
model=get_sam_decoder()_target_model,
device=device,
inputs=get_sam_decoder()_input_data,
)
get_sam_decoder()_inference_job.download_output_data()
get_sam_encoder()_input_data = get_sam_encoder()_model.sample_inputs()
get_sam_encoder()_inference_job = hub.submit_inference_job(
model=get_sam_encoder()_target_model,
device=device,
inputs=get_sam_encoder()_input_data,
)
get_sam_encoder()_inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.sam.demo --on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.sam.demo -- --on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on Segment-Anything-Model's performance across various devices [here](https://aihub.qualcomm.com/models/sam).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
- The license for the original implementation of Segment-Anything-Model can be found
[here](https://github.com/facebookresearch/segment-anything/blob/main/LICENSE).
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [Segment Anything](https://arxiv.org/abs/2304.02643)
* [Source Model Implementation](https://github.com/facebookresearch/segment-anything)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).