File size: 23,285 Bytes
fe4d363
 
 
 
 
 
bc78196
fe4d363
 
 
013cfc4
fe4d363
 
 
 
77e71bc
fe4d363
 
6420584
77e71bc
 
fe4d363
 
 
 
 
 
 
 
 
 
 
 
 
 
8964976
 
bc8251e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe4d363
5fe4acc
 
fe4d363
 
 
 
7815010
fe4d363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe4acc
8964976
 
 
 
bc8251e
 
 
 
 
8964976
 
a04831d
 
bc8251e
 
 
 
 
a04831d
 
 
 
bc8251e
 
 
 
 
a04831d
 
 
 
bc8251e
 
 
 
 
a04831d
 
 
 
bc8251e
 
 
 
 
a04831d
 
 
 
bc8251e
 
 
 
 
a04831d
 
 
 
bc8251e
 
 
 
 
5fe4acc
 
 
fe4d363
 
5fe4acc
fe4d363
 
 
 
 
 
 
 
 
 
 
 
8c93b19
fe4d363
 
8c93b19
a04831d
 
 
 
 
 
 
7fbec75
fe4d363
 
 
 
a04831d
 
fe4d363
a04831d
fe4d363
 
a04831d
 
fe4d363
a04831d
fe4d363
 
 
a04831d
7fbec75
a04831d
 
7fbec75
a04831d
7fbec75
 
a04831d
 
7fbec75
a04831d
7fbec75
 
 
a04831d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe4d363
 
 
 
 
 
 
 
 
 
 
a04831d
 
7a63b8a
 
a04831d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a63b8a
 
fe4d363
 
 
 
 
 
 
 
a04831d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a63b8a
a04831d
7a63b8a
a04831d
 
 
 
7a63b8a
a04831d
7a63b8a
a04831d
fe4d363
 
 
 
 
 
013cfc4
fe4d363
 
5fe4acc
fe4d363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8964976
fe4d363
7815010
 
8964976
 
 
fe4d363
 
 
 
 
8964976
 
fe4d363
2a52266
fe4d363
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
---
library_name: pytorch
license: apache-2.0
tags:
- foundation
- android
pipeline_tag: image-segmentation

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/sam/web-assets/model_demo.png)

# Segment-Anything-Model: Optimized for Mobile Deployment
## High-quality segmentation mask generation around any object in an image with simple input prompt


Transformer based encoder-decoder where prompts specify what to segment in an image thereby allowing segmentation without the need for additional training. The image encoder generates embeddings and the lightweight decoder operates on the embeddings for point and mask based image segmentation.

This model is an implementation of Segment-Anything-Model found [here](https://github.com/facebookresearch/segment-anything).


This repository provides scripts to run Segment-Anything-Model on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/sam).


### Model Details

- **Model Type:** Semantic segmentation
- **Model Stats:**
  - Model checkpoint: vit_l
  - Input resolution: 720p (720x1280)
  - Number of parameters (SAMDecoder): 5.11M
  - Model size (SAMDecoder): 19.6 MB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| SAMDecoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 8.448 ms | 1 - 57 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMDecoder.onnx) |
| SAMDecoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 5.889 ms | 6 - 68 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMDecoder.onnx) |
| SAMDecoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 5.73 ms | 4 - 55 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMDecoder.onnx) |
| SAMDecoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.67 ms | 11 - 11 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMDecoder.onnx) |
| SAMEncoderPart1 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 228.979 ms | 12 - 181 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart1.onnx) |
| SAMEncoderPart1 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 161.859 ms | 36 - 838 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart1.onnx) |
| SAMEncoderPart1 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 158.396 ms | 35 - 789 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart1.onnx) |
| SAMEncoderPart1 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 231.597 ms | 43 - 43 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart1.onnx) |
| SAMEncoderPart2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 781.713 ms | 12 - 147 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart2.onnx) |
| SAMEncoderPart2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 567.288 ms | 36 - 736 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart2.onnx) |
| SAMEncoderPart2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 531.384 ms | 12 - 686 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart2.onnx) |
| SAMEncoderPart2 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 736.185 ms | 33 - 33 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart2.onnx) |
| SAMEncoderPart3 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 779.664 ms | 12 - 159 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart3.onnx) |
| SAMEncoderPart3 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 576.302 ms | 22 - 724 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart3.onnx) |
| SAMEncoderPart3 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 530.988 ms | 12 - 686 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart3.onnx) |
| SAMEncoderPart3 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 729.557 ms | 33 - 33 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart3.onnx) |
| SAMEncoderPart4 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 770.123 ms | 12 - 151 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart4.onnx) |
| SAMEncoderPart4 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 569.238 ms | 24 - 722 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart4.onnx) |
| SAMEncoderPart4 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 478.143 ms | 24 - 699 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart4.onnx) |
| SAMEncoderPart4 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 730.872 ms | 33 - 33 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart4.onnx) |
| SAMEncoderPart5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 772.375 ms | 0 - 133 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart5.onnx) |
| SAMEncoderPart5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 568.921 ms | 24 - 720 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart5.onnx) |
| SAMEncoderPart5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 481.0 ms | 12 - 686 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart5.onnx) |
| SAMEncoderPart5 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 737.772 ms | 33 - 33 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart5.onnx) |
| SAMEncoderPart6 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 768.673 ms | 12 - 148 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart6.onnx) |
| SAMEncoderPart6 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 568.747 ms | 22 - 726 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart6.onnx) |
| SAMEncoderPart6 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 531.699 ms | 12 - 686 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart6.onnx) |
| SAMEncoderPart6 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 727.465 ms | 33 - 33 MB | FP16 | NPU | [Segment-Anything-Model.onnx](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoderPart6.onnx) |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[sam]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.sam.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.sam.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.sam.export
```
```
Profiling Results
------------------------------------------------------------
SAMDecoder
Device                          : Samsung Galaxy S23 (13)
Runtime                         : ONNX                   
Estimated inference time (ms)   : 8.4                    
Estimated peak memory usage (MB): [1, 57]                
Total # Ops                     : 868                    
Compute Unit(s)                 : NPU (868 ops)          

------------------------------------------------------------
SAMEncoderPart1
Device                          : Samsung Galaxy S23 (13)
Runtime                         : ONNX                   
Estimated inference time (ms)   : 229.0                  
Estimated peak memory usage (MB): [12, 181]              
Total # Ops                     : 623                    
Compute Unit(s)                 : NPU (623 ops)          

------------------------------------------------------------
SAMEncoderPart2
Device                          : Samsung Galaxy S23 (13)
Runtime                         : ONNX                   
Estimated inference time (ms)   : 781.7                  
Estimated peak memory usage (MB): [12, 147]              
Total # Ops                     : 610                    
Compute Unit(s)                 : NPU (610 ops)          

------------------------------------------------------------
SAMEncoderPart3
Device                          : Samsung Galaxy S23 (13)
Runtime                         : ONNX                   
Estimated inference time (ms)   : 779.7                  
Estimated peak memory usage (MB): [12, 159]              
Total # Ops                     : 610                    
Compute Unit(s)                 : NPU (610 ops)          

------------------------------------------------------------
SAMEncoderPart4
Device                          : Samsung Galaxy S23 (13)
Runtime                         : ONNX                   
Estimated inference time (ms)   : 770.1                  
Estimated peak memory usage (MB): [12, 151]              
Total # Ops                     : 610                    
Compute Unit(s)                 : NPU (610 ops)          

------------------------------------------------------------
SAMEncoderPart5
Device                          : Samsung Galaxy S23 (13)
Runtime                         : ONNX                   
Estimated inference time (ms)   : 772.4                  
Estimated peak memory usage (MB): [0, 133]               
Total # Ops                     : 610                    
Compute Unit(s)                 : NPU (610 ops)          

------------------------------------------------------------
SAMEncoderPart6
Device                          : Samsung Galaxy S23 (13)
Runtime                         : ONNX                   
Estimated inference time (ms)   : 768.7                  
Estimated peak memory usage (MB): [12, 148]              
Total # Ops                     : 610                    
Compute Unit(s)                 : NPU (610 ops)          
```


## How does this work?

This [export script](https://aihub.qualcomm.com/models/sam/qai_hub_models/models/Segment-Anything-Model/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.sam import Model

# Load the model
model = Model.from_pretrained()
decoder_model = model.decoder
encoder_splits[0]_model = model.encoder_splits[0]
encoder_splits[1]_model = model.encoder_splits[1]
encoder_splits[2]_model = model.encoder_splits[2]
encoder_splits[3]_model = model.encoder_splits[3]
encoder_splits[4]_model = model.encoder_splits[4]
encoder_splits[5]_model = model.encoder_splits[5]

# Device
device = hub.Device("Samsung Galaxy S23")

# Trace model
decoder_input_shape = decoder_model.get_input_spec()
decoder_sample_inputs = decoder_model.sample_inputs()

traced_decoder_model = torch.jit.trace(decoder_model, [torch.tensor(data[0]) for _, data in decoder_sample_inputs.items()])

# Compile model on a specific device
decoder_compile_job = hub.submit_compile_job(
    model=traced_decoder_model ,
    device=device,
    input_specs=decoder_model.get_input_spec(),
)

# Get target model to run on-device
decoder_target_model = decoder_compile_job.get_target_model()
# Trace model
encoder_splits[0]_input_shape = encoder_splits[0]_model.get_input_spec()
encoder_splits[0]_sample_inputs = encoder_splits[0]_model.sample_inputs()

traced_encoder_splits[0]_model = torch.jit.trace(encoder_splits[0]_model, [torch.tensor(data[0]) for _, data in encoder_splits[0]_sample_inputs.items()])

# Compile model on a specific device
encoder_splits[0]_compile_job = hub.submit_compile_job(
    model=traced_encoder_splits[0]_model ,
    device=device,
    input_specs=encoder_splits[0]_model.get_input_spec(),
)

# Get target model to run on-device
encoder_splits[0]_target_model = encoder_splits[0]_compile_job.get_target_model()
# Trace model
encoder_splits[1]_input_shape = encoder_splits[1]_model.get_input_spec()
encoder_splits[1]_sample_inputs = encoder_splits[1]_model.sample_inputs()

traced_encoder_splits[1]_model = torch.jit.trace(encoder_splits[1]_model, [torch.tensor(data[0]) for _, data in encoder_splits[1]_sample_inputs.items()])

# Compile model on a specific device
encoder_splits[1]_compile_job = hub.submit_compile_job(
    model=traced_encoder_splits[1]_model ,
    device=device,
    input_specs=encoder_splits[1]_model.get_input_spec(),
)

# Get target model to run on-device
encoder_splits[1]_target_model = encoder_splits[1]_compile_job.get_target_model()
# Trace model
encoder_splits[2]_input_shape = encoder_splits[2]_model.get_input_spec()
encoder_splits[2]_sample_inputs = encoder_splits[2]_model.sample_inputs()

traced_encoder_splits[2]_model = torch.jit.trace(encoder_splits[2]_model, [torch.tensor(data[0]) for _, data in encoder_splits[2]_sample_inputs.items()])

# Compile model on a specific device
encoder_splits[2]_compile_job = hub.submit_compile_job(
    model=traced_encoder_splits[2]_model ,
    device=device,
    input_specs=encoder_splits[2]_model.get_input_spec(),
)

# Get target model to run on-device
encoder_splits[2]_target_model = encoder_splits[2]_compile_job.get_target_model()
# Trace model
encoder_splits[3]_input_shape = encoder_splits[3]_model.get_input_spec()
encoder_splits[3]_sample_inputs = encoder_splits[3]_model.sample_inputs()

traced_encoder_splits[3]_model = torch.jit.trace(encoder_splits[3]_model, [torch.tensor(data[0]) for _, data in encoder_splits[3]_sample_inputs.items()])

# Compile model on a specific device
encoder_splits[3]_compile_job = hub.submit_compile_job(
    model=traced_encoder_splits[3]_model ,
    device=device,
    input_specs=encoder_splits[3]_model.get_input_spec(),
)

# Get target model to run on-device
encoder_splits[3]_target_model = encoder_splits[3]_compile_job.get_target_model()
# Trace model
encoder_splits[4]_input_shape = encoder_splits[4]_model.get_input_spec()
encoder_splits[4]_sample_inputs = encoder_splits[4]_model.sample_inputs()

traced_encoder_splits[4]_model = torch.jit.trace(encoder_splits[4]_model, [torch.tensor(data[0]) for _, data in encoder_splits[4]_sample_inputs.items()])

# Compile model on a specific device
encoder_splits[4]_compile_job = hub.submit_compile_job(
    model=traced_encoder_splits[4]_model ,
    device=device,
    input_specs=encoder_splits[4]_model.get_input_spec(),
)

# Get target model to run on-device
encoder_splits[4]_target_model = encoder_splits[4]_compile_job.get_target_model()
# Trace model
encoder_splits[5]_input_shape = encoder_splits[5]_model.get_input_spec()
encoder_splits[5]_sample_inputs = encoder_splits[5]_model.sample_inputs()

traced_encoder_splits[5]_model = torch.jit.trace(encoder_splits[5]_model, [torch.tensor(data[0]) for _, data in encoder_splits[5]_sample_inputs.items()])

# Compile model on a specific device
encoder_splits[5]_compile_job = hub.submit_compile_job(
    model=traced_encoder_splits[5]_model ,
    device=device,
    input_specs=encoder_splits[5]_model.get_input_spec(),
)

# Get target model to run on-device
encoder_splits[5]_target_model = encoder_splits[5]_compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
decoder_profile_job = hub.submit_profile_job(
    model=decoder_target_model,
    device=device,
)
encoder_splits[0]_profile_job = hub.submit_profile_job(
    model=encoder_splits[0]_target_model,
    device=device,
)
encoder_splits[1]_profile_job = hub.submit_profile_job(
    model=encoder_splits[1]_target_model,
    device=device,
)
encoder_splits[2]_profile_job = hub.submit_profile_job(
    model=encoder_splits[2]_target_model,
    device=device,
)
encoder_splits[3]_profile_job = hub.submit_profile_job(
    model=encoder_splits[3]_target_model,
    device=device,
)
encoder_splits[4]_profile_job = hub.submit_profile_job(
    model=encoder_splits[4]_target_model,
    device=device,
)
encoder_splits[5]_profile_job = hub.submit_profile_job(
    model=encoder_splits[5]_target_model,
    device=device,
)

```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
decoder_input_data = decoder_model.sample_inputs()
decoder_inference_job = hub.submit_inference_job(
    model=decoder_target_model,
    device=device,
    inputs=decoder_input_data,
)
decoder_inference_job.download_output_data()
encoder_splits[0]_input_data = encoder_splits[0]_model.sample_inputs()
encoder_splits[0]_inference_job = hub.submit_inference_job(
    model=encoder_splits[0]_target_model,
    device=device,
    inputs=encoder_splits[0]_input_data,
)
encoder_splits[0]_inference_job.download_output_data()
encoder_splits[1]_input_data = encoder_splits[1]_model.sample_inputs()
encoder_splits[1]_inference_job = hub.submit_inference_job(
    model=encoder_splits[1]_target_model,
    device=device,
    inputs=encoder_splits[1]_input_data,
)
encoder_splits[1]_inference_job.download_output_data()
encoder_splits[2]_input_data = encoder_splits[2]_model.sample_inputs()
encoder_splits[2]_inference_job = hub.submit_inference_job(
    model=encoder_splits[2]_target_model,
    device=device,
    inputs=encoder_splits[2]_input_data,
)
encoder_splits[2]_inference_job.download_output_data()
encoder_splits[3]_input_data = encoder_splits[3]_model.sample_inputs()
encoder_splits[3]_inference_job = hub.submit_inference_job(
    model=encoder_splits[3]_target_model,
    device=device,
    inputs=encoder_splits[3]_input_data,
)
encoder_splits[3]_inference_job.download_output_data()
encoder_splits[4]_input_data = encoder_splits[4]_model.sample_inputs()
encoder_splits[4]_inference_job = hub.submit_inference_job(
    model=encoder_splits[4]_target_model,
    device=device,
    inputs=encoder_splits[4]_input_data,
)
encoder_splits[4]_inference_job.download_output_data()
encoder_splits[5]_input_data = encoder_splits[5]_model.sample_inputs()
encoder_splits[5]_inference_job = hub.submit_inference_job(
    model=encoder_splits[5]_target_model,
    device=device,
    inputs=encoder_splits[5]_input_data,
)
encoder_splits[5]_inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.sam.demo --on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.sam.demo -- --on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Segment-Anything-Model's performance across various devices [here](https://aihub.qualcomm.com/models/sam).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Segment-Anything-Model can be found
  [here](https://github.com/facebookresearch/segment-anything/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Segment Anything](https://arxiv.org/abs/2304.02643)
* [Source Model Implementation](https://github.com/facebookresearch/segment-anything)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).