qaihm-bot commited on
Commit
5fe4acc
·
verified ·
1 Parent(s): 99e7e87

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +27 -4
README.md CHANGED
@@ -31,10 +31,13 @@ More details on model performance across various devices, can be found
31
  - Model size (SAMDecoder): 19.6 MB
32
 
33
 
 
 
34
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  | ---|---|---|---|---|---|---|---|
36
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 48.828 ms | 4 - 12 MB | FP16 | NPU | [SAMDecoder.tflite](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMDecoder.tflite)
37
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 11078.146 ms | 2592 - 2596 MB | FP32 | CPU | [SAMEncoder.tflite](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoder.tflite)
 
38
 
39
 
40
  ## Installation
@@ -92,9 +95,28 @@ device. This script does the following:
92
  python -m qai_hub_models.models.sam.export
93
  ```
94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  ## How does this work?
96
 
97
- This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Segment-Anything-Model/export.py)
98
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
99
  on-device. Lets go through each step below in detail:
100
 
@@ -171,6 +193,7 @@ spot check the output with expected output.
171
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
172
 
173
 
 
174
  ## Run demo on a cloud-hosted device
175
 
176
  You can also run the demo on-device.
@@ -207,7 +230,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
207
  ## License
208
  - The license for the original implementation of Segment-Anything-Model can be found
209
  [here](https://github.com/facebookresearch/segment-anything/blob/main/LICENSE).
210
- - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
211
 
212
  ## References
213
  * [Segment Anything](https://arxiv.org/abs/2304.02643)
 
31
  - Model size (SAMDecoder): 19.6 MB
32
 
33
 
34
+
35
+
36
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
37
  | ---|---|---|---|---|---|---|---|
38
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 48.23 ms | 4 - 7 MB | FP16 | NPU | [SAMDecoder.tflite](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMDecoder.tflite)
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 12009.97 ms | 2597 - 2601 MB | FP32 | CPU | [SAMEncoder.tflite](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoder.tflite)
40
+
41
 
42
 
43
  ## Installation
 
95
  python -m qai_hub_models.models.sam.export
96
  ```
97
 
98
+ ```
99
+ Profile Job summary of SAMDecoder
100
+ --------------------------------------------------
101
+ Device: QCS8550 (Proxy) (12)
102
+ Estimated Inference Time: 48.06 ms
103
+ Estimated Peak Memory Range: 3.82-11.95 MB
104
+ Compute Units: NPU (340) | Total (340)
105
+
106
+ Profile Job summary of SAMEncoder
107
+ --------------------------------------------------
108
+ Device: QCS8550 (Proxy) (12)
109
+ Estimated Inference Time: 11285.66 ms
110
+ Estimated Peak Memory Range: 2519.75-2523.24 MB
111
+ Compute Units: GPU (37),CPU (771) | Total (808)
112
+
113
+
114
+ ```
115
+
116
+
117
  ## How does this work?
118
 
119
+ This [export script](https://aihub.qualcomm.com/models/sam/qai_hub_models/models/Segment-Anything-Model/export.py)
120
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
121
  on-device. Lets go through each step below in detail:
122
 
 
193
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
194
 
195
 
196
+
197
  ## Run demo on a cloud-hosted device
198
 
199
  You can also run the demo on-device.
 
230
  ## License
231
  - The license for the original implementation of Segment-Anything-Model can be found
232
  [here](https://github.com/facebookresearch/segment-anything/blob/main/LICENSE).
233
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
234
 
235
  ## References
236
  * [Segment Anything](https://arxiv.org/abs/2304.02643)