QuickSRNetSmall / README.md
qaihm-bot's picture
v0.37.0
9cdb6dc verified
|
raw
history blame
21.4 kB
metadata
library_name: pytorch
license: other
tags:
  - android
pipeline_tag: image-to-image

QuickSRNetSmall: Optimized for Mobile Deployment

Upscale images and remove image noise

QuickSRNet Small is designed for upscaling images on mobile platforms to sharpen in real-time.

This model is an implementation of QuickSRNetSmall found here.

This repository provides scripts to run QuickSRNetSmall on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.super_resolution
  • Model Stats:
    • Model checkpoint: quicksrnet_small_3x_checkpoint
    • Input resolution: 128x128
    • Number of parameters: 33.3K
    • Model size (float): 133 KB
    • Model size (w8a8): 41.7 KB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
QuickSRNetSmall float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 2.319 ms 0 - 14 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 1.856 ms 0 - 15 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 1.128 ms 2 - 31 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 1.024 ms 0 - 27 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 0.991 ms 0 - 7 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 0.736 ms 0 - 7 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 1.068 ms 0 - 9 MB NPU QuickSRNetSmall.onnx.zip
QuickSRNetSmall float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 1.405 ms 0 - 15 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 1.075 ms 0 - 15 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall float SA7255P ADP Qualcomm® SA7255P TFLITE 2.319 ms 0 - 14 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall float SA7255P ADP Qualcomm® SA7255P QNN_DLC 1.856 ms 0 - 15 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 0.989 ms 0 - 4 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 0.74 ms 2 - 8 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall float SA8295P ADP Qualcomm® SA8295P TFLITE 1.559 ms 0 - 21 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall float SA8295P ADP Qualcomm® SA8295P QNN_DLC 1.343 ms 0 - 24 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 0.993 ms 0 - 4 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 0.754 ms 0 - 4 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall float SA8775P ADP Qualcomm® SA8775P TFLITE 1.405 ms 0 - 15 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall float SA8775P ADP Qualcomm® SA8775P QNN_DLC 1.075 ms 0 - 15 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 0.98 ms 0 - 6 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 0.734 ms 0 - 7 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 1.124 ms 0 - 9 MB NPU QuickSRNetSmall.onnx.zip
QuickSRNetSmall float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 0.607 ms 0 - 22 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 0.44 ms 0 - 27 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 0.726 ms 0 - 22 MB NPU QuickSRNetSmall.onnx.zip
QuickSRNetSmall float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 0.563 ms 0 - 20 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 0.361 ms 0 - 26 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 0.644 ms 0 - 16 MB NPU QuickSRNetSmall.onnx.zip
QuickSRNetSmall float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 0.854 ms 2 - 2 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 1.11 ms 8 - 8 MB NPU QuickSRNetSmall.onnx.zip
QuickSRNetSmall w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 0.895 ms 1 - 15 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 0.808 ms 0 - 14 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 0.463 ms 1 - 29 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 0.453 ms 0 - 26 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 0.393 ms 0 - 10 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 0.313 ms 0 - 4 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 3.227 ms 0 - 18 MB NPU QuickSRNetSmall.onnx.zip
QuickSRNetSmall w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 0.59 ms 0 - 15 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 0.506 ms 0 - 14 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) TFLITE 0.934 ms 0 - 18 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 0.87 ms 0 - 18 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) ONNX 13.734 ms 17 - 28 MB CPU QuickSRNetSmall.onnx.zip
QuickSRNetSmall w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 11.86 ms 1 - 3 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 12.679 ms 18 - 20 MB CPU QuickSRNetSmall.onnx.zip
QuickSRNetSmall w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 0.895 ms 1 - 15 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 0.808 ms 0 - 14 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 0.389 ms 0 - 4 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 0.316 ms 0 - 10 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 0.747 ms 0 - 24 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 0.692 ms 0 - 21 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 0.395 ms 0 - 10 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 0.327 ms 0 - 10 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 0.59 ms 0 - 15 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 0.506 ms 0 - 14 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 0.387 ms 0 - 3 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 0.336 ms 0 - 3 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 3.145 ms 0 - 14 MB NPU QuickSRNetSmall.onnx.zip
QuickSRNetSmall w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 0.248 ms 0 - 24 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 0.216 ms 0 - 24 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 2.338 ms 0 - 25 MB NPU QuickSRNetSmall.onnx.zip
QuickSRNetSmall w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 0.254 ms 1 - 21 MB NPU QuickSRNetSmall.tflite
QuickSRNetSmall w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 0.207 ms 0 - 24 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 1.977 ms 0 - 16 MB NPU QuickSRNetSmall.onnx.zip
QuickSRNetSmall w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 0.433 ms 6 - 6 MB NPU QuickSRNetSmall.dlc
QuickSRNetSmall w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 3.277 ms 31 - 31 MB NPU QuickSRNetSmall.onnx.zip

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.quicksrnetsmall.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.quicksrnetsmall.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.quicksrnetsmall.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.quicksrnetsmall import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.quicksrnetsmall.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.quicksrnetsmall.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on QuickSRNetSmall's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of QuickSRNetSmall can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community