QuickSRNetMedium: Optimized for Mobile Deployment

Upscale images and remove image noise

QuickSRNet Medium is designed for upscaling images on mobile platforms to sharpen in real-time.

This model is an implementation of QuickSRNetMedium found here.

This repository provides scripts to run QuickSRNetMedium on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Super resolution
  • Model Stats:
    • Model checkpoint: quicksrnet_medium_3x_checkpoint
    • Input resolution: 128x128
    • Number of parameters: 55.0K
    • Model size: 220 KB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
QuickSRNetMedium Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 1.429 ms 0 - 12 MB FP16 NPU QuickSRNetMedium.tflite
QuickSRNetMedium Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 0.888 ms 0 - 3 MB FP16 NPU QuickSRNetMedium.so
QuickSRNetMedium Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 1.467 ms 0 - 7 MB FP16 NPU QuickSRNetMedium.onnx
QuickSRNetMedium Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 0.924 ms 0 - 22 MB FP16 NPU QuickSRNetMedium.tflite
QuickSRNetMedium Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 0.503 ms 0 - 19 MB FP16 NPU QuickSRNetMedium.so
QuickSRNetMedium Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 0.91 ms 0 - 23 MB FP16 NPU QuickSRNetMedium.onnx
QuickSRNetMedium Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 1.237 ms 0 - 17 MB FP16 NPU QuickSRNetMedium.tflite
QuickSRNetMedium Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 0.529 ms 0 - 15 MB FP16 NPU Use Export Script
QuickSRNetMedium Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 0.9 ms 0 - 15 MB FP16 NPU QuickSRNetMedium.onnx
QuickSRNetMedium SA7255P ADP SA7255P TFLITE 16.366 ms 6 - 17 MB FP16 NPU QuickSRNetMedium.tflite
QuickSRNetMedium SA7255P ADP SA7255P QNN 13.722 ms 0 - 10 MB FP16 NPU Use Export Script
QuickSRNetMedium SA8255 (Proxy) SA8255P Proxy TFLITE 1.328 ms 0 - 9 MB FP16 NPU QuickSRNetMedium.tflite
QuickSRNetMedium SA8255 (Proxy) SA8255P Proxy QNN 0.861 ms 0 - 2 MB FP16 NPU Use Export Script
QuickSRNetMedium SA8295P ADP SA8295P TFLITE 2.202 ms 0 - 20 MB FP16 NPU QuickSRNetMedium.tflite
QuickSRNetMedium SA8295P ADP SA8295P QNN 1.474 ms 0 - 18 MB FP16 NPU Use Export Script
QuickSRNetMedium SA8650 (Proxy) SA8650P Proxy TFLITE 1.352 ms 0 - 3 MB FP16 NPU QuickSRNetMedium.tflite
QuickSRNetMedium SA8650 (Proxy) SA8650P Proxy QNN 0.873 ms 0 - 2 MB FP16 NPU Use Export Script
QuickSRNetMedium SA8775P ADP SA8775P TFLITE 2.437 ms 0 - 11 MB FP16 NPU QuickSRNetMedium.tflite
QuickSRNetMedium SA8775P ADP SA8775P QNN 1.545 ms 0 - 10 MB FP16 NPU Use Export Script
QuickSRNetMedium QCS8275 (Proxy) QCS8275 Proxy TFLITE 16.366 ms 6 - 17 MB FP16 NPU QuickSRNetMedium.tflite
QuickSRNetMedium QCS8275 (Proxy) QCS8275 Proxy QNN 13.722 ms 0 - 10 MB FP16 NPU Use Export Script
QuickSRNetMedium QCS8550 (Proxy) QCS8550 Proxy TFLITE 1.387 ms 0 - 10 MB FP16 NPU QuickSRNetMedium.tflite
QuickSRNetMedium QCS8550 (Proxy) QCS8550 Proxy QNN 0.887 ms 0 - 10 MB FP16 NPU Use Export Script
QuickSRNetMedium QCS9075 (Proxy) QCS9075 Proxy TFLITE 2.437 ms 0 - 11 MB FP16 NPU QuickSRNetMedium.tflite
QuickSRNetMedium QCS9075 (Proxy) QCS9075 Proxy QNN 1.545 ms 0 - 10 MB FP16 NPU Use Export Script
QuickSRNetMedium QCS8450 (Proxy) QCS8450 Proxy TFLITE 3.661 ms 6 - 25 MB FP16 NPU QuickSRNetMedium.tflite
QuickSRNetMedium QCS8450 (Proxy) QCS8450 Proxy QNN 1.278 ms 0 - 19 MB FP16 NPU Use Export Script
QuickSRNetMedium Snapdragon X Elite CRD Snapdragon® X Elite QNN 0.973 ms 0 - 0 MB FP16 NPU Use Export Script
QuickSRNetMedium Snapdragon X Elite CRD Snapdragon® X Elite ONNX 1.431 ms 8 - 8 MB FP16 NPU QuickSRNetMedium.onnx

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.quicksrnetmedium.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.quicksrnetmedium.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.quicksrnetmedium.export
Profiling Results
------------------------------------------------------------
QuickSRNetMedium
Device                          : Samsung Galaxy S23 (13) 
Runtime                         : TFLITE                  
Estimated inference time (ms)   : 1.4                     
Estimated peak memory usage (MB): [0, 12]                 
Total # Ops                     : 17                      
Compute Unit(s)                 : NPU (14 ops) CPU (3 ops)

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.quicksrnetmedium import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.quicksrnetmedium.demo --on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.quicksrnetmedium.demo -- --on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on QuickSRNetMedium's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of QuickSRNetMedium can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support image-to-image models for pytorch library.