Posenet-Mobilenet-Quantized: Optimized for Mobile Deployment

Quantized human pose estimator

Posenet performs pose estimation on human images.

This model is an implementation of Posenet-Mobilenet-Quantized found here.

This repository provides scripts to run Posenet-Mobilenet-Quantized on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Pose estimation
  • Model Stats:
    • Model checkpoint: mobilenet_v1_101
    • Input resolution: 513x257
    • Number of parameters: 3.31M
    • Model size: 3.47 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
Posenet-Mobilenet-Quantized Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 0.564 ms 0 - 13 MB INT8 NPU Posenet-Mobilenet-Quantized.tflite
Posenet-Mobilenet-Quantized Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 0.639 ms 0 - 13 MB INT8 NPU Posenet-Mobilenet-Quantized.so
Posenet-Mobilenet-Quantized Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 0.391 ms 0 - 29 MB INT8 NPU Posenet-Mobilenet-Quantized.tflite
Posenet-Mobilenet-Quantized Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 0.442 ms 0 - 26 MB INT8 NPU Posenet-Mobilenet-Quantized.so
Posenet-Mobilenet-Quantized Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 0.465 ms 0 - 24 MB INT8 NPU Posenet-Mobilenet-Quantized.tflite
Posenet-Mobilenet-Quantized Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 0.461 ms 0 - 25 MB INT8 NPU Use Export Script
Posenet-Mobilenet-Quantized RB3 Gen 2 (Proxy) QCS6490 Proxy TFLITE 2.24 ms 0 - 22 MB INT8 NPU Posenet-Mobilenet-Quantized.tflite
Posenet-Mobilenet-Quantized RB3 Gen 2 (Proxy) QCS6490 Proxy QNN 2.901 ms 0 - 12 MB INT8 NPU Use Export Script
Posenet-Mobilenet-Quantized RB5 (Proxy) QCS8250 Proxy TFLITE 13.613 ms 0 - 8 MB INT8 NPU Posenet-Mobilenet-Quantized.tflite
Posenet-Mobilenet-Quantized QCS8550 (Proxy) QCS8550 Proxy TFLITE 0.564 ms 0 - 12 MB INT8 NPU Posenet-Mobilenet-Quantized.tflite
Posenet-Mobilenet-Quantized QCS8550 (Proxy) QCS8550 Proxy QNN 0.561 ms 0 - 3 MB INT8 NPU Use Export Script
Posenet-Mobilenet-Quantized SA7255P ADP SA7255P TFLITE 7.853 ms 0 - 17 MB INT8 NPU Posenet-Mobilenet-Quantized.tflite
Posenet-Mobilenet-Quantized SA7255P ADP SA7255P QNN 8.108 ms 0 - 10 MB INT8 NPU Use Export Script
Posenet-Mobilenet-Quantized SA8255 (Proxy) SA8255P Proxy TFLITE 0.568 ms 0 - 13 MB INT8 NPU Posenet-Mobilenet-Quantized.tflite
Posenet-Mobilenet-Quantized SA8255 (Proxy) SA8255P Proxy QNN 0.565 ms 0 - 3 MB INT8 NPU Use Export Script
Posenet-Mobilenet-Quantized SA8295P ADP SA8295P TFLITE 1.227 ms 0 - 24 MB INT8 NPU Posenet-Mobilenet-Quantized.tflite
Posenet-Mobilenet-Quantized SA8295P ADP SA8295P QNN 1.342 ms 0 - 15 MB INT8 NPU Use Export Script
Posenet-Mobilenet-Quantized SA8650 (Proxy) SA8650P Proxy TFLITE 0.567 ms 0 - 12 MB INT8 NPU Posenet-Mobilenet-Quantized.tflite
Posenet-Mobilenet-Quantized SA8650 (Proxy) SA8650P Proxy QNN 0.562 ms 0 - 3 MB INT8 NPU Use Export Script
Posenet-Mobilenet-Quantized SA8775P ADP SA8775P TFLITE 0.98 ms 0 - 18 MB INT8 NPU Posenet-Mobilenet-Quantized.tflite
Posenet-Mobilenet-Quantized SA8775P ADP SA8775P QNN 1.117 ms 0 - 10 MB INT8 NPU Use Export Script
Posenet-Mobilenet-Quantized QCS8450 (Proxy) QCS8450 Proxy TFLITE 0.755 ms 0 - 30 MB INT8 NPU Posenet-Mobilenet-Quantized.tflite
Posenet-Mobilenet-Quantized QCS8450 (Proxy) QCS8450 Proxy QNN 0.796 ms 0 - 23 MB INT8 NPU Use Export Script
Posenet-Mobilenet-Quantized Snapdragon X Elite CRD Snapdragon® X Elite QNN 0.689 ms 0 - 0 MB INT8 NPU Use Export Script

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.posenet_mobilenet_quantized.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.posenet_mobilenet_quantized.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.posenet_mobilenet_quantized.export
Profiling Results
------------------------------------------------------------
Posenet-Mobilenet-Quantized
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 0.6                    
Estimated peak memory usage (MB): [0, 13]                
Total # Ops                     : 48                     
Compute Unit(s)                 : NPU (48 ops)           

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.posenet_mobilenet_quantized.demo --on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.posenet_mobilenet_quantized.demo -- --on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Posenet-Mobilenet-Quantized's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Posenet-Mobilenet-Quantized can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support keypoint-detection models for pytorch library.