File size: 5,729 Bytes
12d5266
 
 
 
 
f4f9c1a
12d5266
 
 
89fcaa1
12d5266
 
 
 
1354ce9
12d5266
 
b3e9323
1354ce9
 
570a99d
12d5266
 
 
 
 
 
 
 
 
 
cecacfe
 
f4f9c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12d5266
493a28c
 
12d5266
cecacfe
31b58e1
 
cecacfe
12d5266
 
 
 
 
 
 
cecacfe
 
12d5266
cecacfe
12d5266
 
cecacfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
library_name: pytorch
license: other
tags:
- android
pipeline_tag: keypoint-detection

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/openpose/web-assets/model_demo.png)

# OpenPose: Optimized for Mobile Deployment
## Human pose estimation


OpenPose is a machine learning model that estimates body and hand pose in an image and returns location and confidence for each of 19 joints.

This model is an implementation of OpenPose found [here](https://github.com/CMU-Perceptual-Computing-Lab/openpose).


 More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/openpose).

### Model Details

- **Model Type:** Pose estimation
- **Model Stats:**
  - Model checkpoint: body_pose_model.pth
  - Input resolution: 240x320
  - Number of parameters: 52.3M
  - Model size: 200 MB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| OpenPose | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 11.722 ms | 0 - 376 MB | FP16 | NPU | -- |
| OpenPose | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 11.707 ms | 1 - 3 MB | FP16 | NPU | -- |
| OpenPose | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 11.906 ms | 1 - 320 MB | FP16 | NPU | -- |
| OpenPose | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 8.709 ms | 0 - 25 MB | FP16 | NPU | -- |
| OpenPose | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 8.699 ms | 1 - 20 MB | FP16 | NPU | -- |
| OpenPose | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 9.01 ms | 1 - 29 MB | FP16 | NPU | -- |
| OpenPose | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 7.068 ms | 0 - 21 MB | FP16 | NPU | -- |
| OpenPose | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 8.712 ms | 1 - 20 MB | FP16 | NPU | -- |
| OpenPose | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 8.915 ms | 3 - 29 MB | FP16 | NPU | -- |
| OpenPose | SA7255P ADP | SA7255P | TFLITE | 769.975 ms | 0 - 14 MB | FP16 | NPU | -- |
| OpenPose | SA7255P ADP | SA7255P | QNN | 770.172 ms | 1 - 8 MB | FP16 | NPU | -- |
| OpenPose | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 11.721 ms | 0 - 375 MB | FP16 | NPU | -- |
| OpenPose | SA8255 (Proxy) | SA8255P Proxy | QNN | 11.776 ms | 1 - 3 MB | FP16 | NPU | -- |
| OpenPose | SA8295P ADP | SA8295P | TFLITE | 26.637 ms | 0 - 16 MB | FP16 | NPU | -- |
| OpenPose | SA8295P ADP | SA8295P | QNN | 25.867 ms | 1 - 12 MB | FP16 | NPU | -- |
| OpenPose | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 11.79 ms | 0 - 375 MB | FP16 | NPU | -- |
| OpenPose | SA8650 (Proxy) | SA8650P Proxy | QNN | 11.696 ms | 1 - 3 MB | FP16 | NPU | -- |
| OpenPose | SA8775P ADP | SA8775P | TFLITE | 29.287 ms | 0 - 14 MB | FP16 | NPU | -- |
| OpenPose | SA8775P ADP | SA8775P | QNN | 29.346 ms | 1 - 8 MB | FP16 | NPU | -- |
| OpenPose | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 769.975 ms | 0 - 14 MB | FP16 | NPU | -- |
| OpenPose | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 770.172 ms | 1 - 8 MB | FP16 | NPU | -- |
| OpenPose | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 11.659 ms | 0 - 365 MB | FP16 | NPU | -- |
| OpenPose | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 11.686 ms | 1 - 3 MB | FP16 | NPU | -- |
| OpenPose | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 29.287 ms | 0 - 14 MB | FP16 | NPU | -- |
| OpenPose | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 29.346 ms | 1 - 8 MB | FP16 | NPU | -- |
| OpenPose | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 23.391 ms | 0 - 20 MB | FP16 | NPU | -- |
| OpenPose | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 23.515 ms | 1 - 20 MB | FP16 | NPU | -- |
| OpenPose | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 12.349 ms | 1 - 1 MB | FP16 | NPU | -- |
| OpenPose | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 12.807 ms | 103 - 103 MB | FP16 | NPU | -- |




## License
* The license for the original implementation of OpenPose can be found
  [here](https://cmu.flintbox.com/technologies/b820c21d-8443-4aa2-a49f-8919d93a8740).
* The license for the compiled assets for on-device deployment can be found [here](https://cmu.flintbox.com/technologies/b820c21d-8443-4aa2-a49f-8919d93a8740)



## References
* [OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields](https://arxiv.org/abs/1812.08008)
* [Source Model Implementation](https://github.com/CMU-Perceptual-Computing-Lab/openpose)



## Community
* Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).

## Usage and Limitations

Model may not be used for or in connection with any of the following applications:

- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation