qaihm-bot commited on
Commit
cecacfe
·
verified ·
1 Parent(s): 077af3e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +52 -177
README.md CHANGED
@@ -14,11 +14,9 @@ tags:
14
 
15
  OpenPose is a machine learning model that estimates body and hand pose in an image and returns location and confidence for each of 19 joints.
16
 
17
- This model is an implementation of OpenPose found [here](https://github.com/CMU-Perceptual-Computing-Lab/openpose).
18
- This repository provides scripts to run OpenPose on Qualcomm® devices.
19
- More details on model performance across various devices, can be found
20
- [here](https://aihub.qualcomm.com/models/openpose).
21
-
22
 
23
  ### Model Details
24
 
@@ -29,189 +27,66 @@ More details on model performance across various devices, can be found
29
  - Number of parameters: 52.3M
30
  - Model size: 200 MB
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
 
34
 
35
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
- | ---|---|---|---|---|---|---|---|
37
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 11.699 ms | 0 - 2 MB | FP16 | NPU | [OpenPose.tflite](https://huggingface.co/qualcomm/OpenPose/blob/main/OpenPose.tflite)
38
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 11.933 ms | 1 - 219 MB | FP16 | NPU | OpenPose
39
-
40
-
41
-
42
- ## Installation
43
-
44
- This model can be installed as a Python package via pip.
45
-
46
- ```bash
47
- pip install "qai-hub-models[openpose]"
48
- ```
49
-
50
-
51
-
52
- ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
53
-
54
- Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
55
- Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
56
-
57
- With this API token, you can configure your client to run models on the cloud
58
- hosted devices.
59
- ```bash
60
- qai-hub configure --api_token API_TOKEN
61
- ```
62
- Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
63
-
64
-
65
-
66
- ## Demo off target
67
-
68
- The package contains a simple end-to-end demo that downloads pre-trained
69
- weights and runs this model on a sample input.
70
-
71
- ```bash
72
- python -m qai_hub_models.models.openpose.demo
73
- ```
74
-
75
- The above demo runs a reference implementation of pre-processing, model
76
- inference, and post processing.
77
-
78
- **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
79
- environment, please add the following to your cell (instead of the above).
80
- ```
81
- %run -m qai_hub_models.models.openpose.demo
82
- ```
83
-
84
-
85
- ### Run model on a cloud-hosted device
86
-
87
- In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
88
- device. This script does the following:
89
- * Performance check on-device on a cloud-hosted device
90
- * Downloads compiled assets that can be deployed on-device for Android.
91
- * Accuracy check between PyTorch and on-device outputs.
92
-
93
- ```bash
94
- python -m qai_hub_models.models.openpose.export
95
- ```
96
-
97
- ```
98
- Profile Job summary of OpenPose
99
- --------------------------------------------------
100
- Device: Snapdragon X Elite CRD (11)
101
- Estimated Inference Time: 12.32 ms
102
- Estimated Peak Memory Range: 0.57-0.57 MB
103
- Compute Units: NPU (186) | Total (186)
104
-
105
-
106
- ```
107
-
108
-
109
- ## How does this work?
110
-
111
- This [export script](https://aihub.qualcomm.com/models/openpose/qai_hub_models/models/OpenPose/export.py)
112
- leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
113
- on-device. Lets go through each step below in detail:
114
-
115
- Step 1: **Compile model for on-device deployment**
116
-
117
- To compile a PyTorch model for on-device deployment, we first trace the model
118
- in memory using the `jit.trace` and then call the `submit_compile_job` API.
119
-
120
- ```python
121
- import torch
122
-
123
- import qai_hub as hub
124
- from qai_hub_models.models.openpose import
125
-
126
- # Load the model
127
-
128
- # Device
129
- device = hub.Device("Samsung Galaxy S23")
130
-
131
-
132
- ```
133
-
134
-
135
- Step 2: **Performance profiling on cloud-hosted device**
136
-
137
- After compiling models from step 1. Models can be profiled model on-device using the
138
- `target_model`. Note that this scripts runs the model on a device automatically
139
- provisioned in the cloud. Once the job is submitted, you can navigate to a
140
- provided job URL to view a variety of on-device performance metrics.
141
- ```python
142
- profile_job = hub.submit_profile_job(
143
- model=target_model,
144
- device=device,
145
- )
146
-
147
- ```
148
-
149
- Step 3: **Verify on-device accuracy**
150
-
151
- To verify the accuracy of the model on-device, you can run on-device inference
152
- on sample input data on the same cloud hosted device.
153
- ```python
154
- input_data = torch_model.sample_inputs()
155
- inference_job = hub.submit_inference_job(
156
- model=target_model,
157
- device=device,
158
- inputs=input_data,
159
- )
160
- on_device_output = inference_job.download_output_data()
161
-
162
- ```
163
- With the output of the model, you can compute like PSNR, relative errors or
164
- spot check the output with expected output.
165
-
166
- **Note**: This on-device profiling and inference requires access to Qualcomm®
167
- AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
168
-
169
-
170
-
171
- ## Run demo on a cloud-hosted device
172
-
173
- You can also run the demo on-device.
174
-
175
- ```bash
176
- python -m qai_hub_models.models.openpose.demo --on-device
177
- ```
178
-
179
- **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
180
- environment, please add the following to your cell (instead of the above).
181
- ```
182
- %run -m qai_hub_models.models.openpose.demo -- --on-device
183
- ```
184
-
185
-
186
- ## Deploying compiled model to Android
187
-
188
-
189
- The models can be deployed using multiple runtimes:
190
- - TensorFlow Lite (`.tflite` export): [This
191
- tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
192
- guide to deploy the .tflite model in an Android application.
193
-
194
-
195
- - QNN (`.so` export ): This [sample
196
- app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
197
- provides instructions on how to use the `.so` shared library in an Android application.
198
 
 
 
 
199
 
200
- ## View on Qualcomm® AI Hub
201
- Get more details on OpenPose's performance across various devices [here](https://aihub.qualcomm.com/models/openpose).
202
- Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
203
 
204
- ## License
205
- - The license for the original implementation of OpenPose can be found
206
- [here](https://cmu.flintbox.com/technologies/b820c21d-8443-4aa2-a49f-8919d93a8740).
207
- - The license for the compiled assets for on-device deployment can be found [here](https://cmu.flintbox.com/technologies/b820c21d-8443-4aa2-a49f-8919d93a8740)
208
 
209
  ## References
210
  * [OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields](https://arxiv.org/abs/1812.08008)
211
  * [Source Model Implementation](https://github.com/CMU-Perceptual-Computing-Lab/openpose)
212
 
 
 
213
  ## Community
214
- * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
215
  * For questions or feedback please [reach out to us](mailto:[email protected]).
216
 
217
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  OpenPose is a machine learning model that estimates body and hand pose in an image and returns location and confidence for each of 19 joints.
16
 
17
+ This is based on the implementation of OpenPose found
18
+ [here]({source_repo}). More details on model performance
19
+ accross various devices, can be found [here](https://aihub.qualcomm.com/models/openpose).
 
 
20
 
21
  ### Model Details
22
 
 
27
  - Number of parameters: 52.3M
28
  - Model size: 200 MB
29
 
30
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
31
+ |---|---|---|---|---|---|---|---|---|
32
+ | OpenPose | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 11.959 ms | 0 - 2 MB | FP16 | NPU | -- |
33
+ | OpenPose | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 11.864 ms | 1 - 205 MB | FP16 | NPU | -- |
34
+ | OpenPose | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 12.08 ms | 0 - 114 MB | FP16 | NPU | -- |
35
+ | OpenPose | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 11.393 ms | 0 - 41 MB | FP16 | NPU | -- |
36
+ | OpenPose | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 11.479 ms | 1 - 18 MB | FP16 | NPU | -- |
37
+ | OpenPose | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 11.482 ms | 0 - 45 MB | FP16 | NPU | -- |
38
+ | OpenPose | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 11.74 ms | 0 - 3 MB | FP16 | NPU | -- |
39
+ | OpenPose | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 12.078 ms | 1 - 2 MB | FP16 | NPU | -- |
40
+ | OpenPose | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 11.737 ms | 0 - 2 MB | FP16 | NPU | -- |
41
+ | OpenPose | SA8255 (Proxy) | SA8255P Proxy | QNN | 12.134 ms | 1 - 2 MB | FP16 | NPU | -- |
42
+ | OpenPose | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 11.702 ms | 0 - 2 MB | FP16 | NPU | -- |
43
+ | OpenPose | SA8775 (Proxy) | SA8775P Proxy | QNN | 12.105 ms | 1 - 2 MB | FP16 | NPU | -- |
44
+ | OpenPose | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 11.688 ms | 0 - 2 MB | FP16 | NPU | -- |
45
+ | OpenPose | SA8650 (Proxy) | SA8650P Proxy | QNN | 12.118 ms | 1 - 2 MB | FP16 | NPU | -- |
46
+ | OpenPose | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 23.527 ms | 0 - 41 MB | FP16 | NPU | -- |
47
+ | OpenPose | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 23.749 ms | 1 - 18 MB | FP16 | NPU | -- |
48
+ | OpenPose | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 8.656 ms | 0 - 23 MB | FP16 | NPU | -- |
49
+ | OpenPose | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 8.742 ms | 1 - 16 MB | FP16 | NPU | -- |
50
+ | OpenPose | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 7.177 ms | 1 - 27 MB | FP16 | NPU | -- |
51
+ | OpenPose | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 12.659 ms | 1 - 1 MB | FP16 | NPU | -- |
52
+ | OpenPose | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 12.628 ms | 102 - 102 MB | FP16 | NPU | -- |
53
 
54
 
55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
+ ## License
58
+ * The license for the original implementation of OpenPose can be found [here](https://cmu.flintbox.com/technologies/b820c21d-8443-4aa2-a49f-8919d93a8740).
59
+ * The license for the compiled assets for on-device deployment can be found [here](https://cmu.flintbox.com/technologies/b820c21d-8443-4aa2-a49f-8919d93a8740)
60
 
 
 
 
61
 
 
 
 
 
62
 
63
  ## References
64
  * [OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields](https://arxiv.org/abs/1812.08008)
65
  * [Source Model Implementation](https://github.com/CMU-Perceptual-Computing-Lab/openpose)
66
 
67
+
68
+
69
  ## Community
70
+ * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
71
  * For questions or feedback please [reach out to us](mailto:[email protected]).
72
 
73
+ ## Usage and Limitations
74
+
75
+ Model may not be used for or in connection with any of the following applications:
76
+
77
+ - Accessing essential private and public services and benefits;
78
+ - Administration of justice and democratic processes;
79
+ - Assessing or recognizing the emotional state of a person;
80
+ - Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
81
+ - Education and vocational training;
82
+ - Employment and workers management;
83
+ - Exploitation of the vulnerabilities of persons resulting in harmful behavior;
84
+ - General purpose social scoring;
85
+ - Law enforcement;
86
+ - Management and operation of critical infrastructure;
87
+ - Migration, asylum and border control management;
88
+ - Predictive policing;
89
+ - Real-time remote biometric identification in public spaces;
90
+ - Recommender systems of social media platforms;
91
+ - Scraping of facial images (from the internet or otherwise); and/or
92
+ - Subliminal manipulation