DeepLabV3-Plus-MobileNet: Optimized for Mobile Deployment

Deep Convolutional Neural Network model for semantic segmentation

DeepLabV3 is designed for semantic segmentation at multiple scales, trained on the various datasets. It uses MobileNet as a backbone.

This model is an implementation of DeepLabV3-Plus-MobileNet found here.

This repository provides scripts to run DeepLabV3-Plus-MobileNet on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.semantic_segmentation
  • Model Stats:
    • Model checkpoint: VOC2012
    • Input resolution: 513x513
    • Number of output classes: 21
    • Number of parameters: 5.80M
    • Model size (float): 22.2 MB
    • Model size (w8a16): 6.67 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
DeepLabV3-Plus-MobileNet float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 62.712 ms 0 - 30 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 58.624 ms 0 - 33 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 19.289 ms 0 - 43 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 18.649 ms 3 - 58 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 13.043 ms 0 - 12 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 11.073 ms 3 - 16 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 19.562 ms 0 - 31 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 17.427 ms 2 - 35 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet float SA7255P ADP Qualcomm® SA7255P TFLITE 62.712 ms 0 - 30 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet float SA7255P ADP Qualcomm® SA7255P QNN_DLC 58.624 ms 0 - 33 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 13.094 ms 0 - 12 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 11.088 ms 3 - 20 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet float SA8295P ADP Qualcomm® SA8295P TFLITE 22.2 ms 0 - 36 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet float SA8295P ADP Qualcomm® SA8295P QNN_DLC 19.014 ms 2 - 53 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 13.062 ms 0 - 13 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 11.071 ms 4 - 21 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet float SA8775P ADP Qualcomm® SA8775P TFLITE 19.562 ms 0 - 31 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet float SA8775P ADP Qualcomm® SA8775P QNN_DLC 17.427 ms 2 - 35 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 13.092 ms 0 - 14 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 11.056 ms 3 - 16 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 10.731 ms 0 - 35 MB NPU DeepLabV3-Plus-MobileNet.onnx.zip
DeepLabV3-Plus-MobileNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 9.14 ms 0 - 49 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 7.99 ms 3 - 48 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 7.561 ms 0 - 44 MB NPU DeepLabV3-Plus-MobileNet.onnx.zip
DeepLabV3-Plus-MobileNet float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 8.606 ms 0 - 35 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 7.418 ms 3 - 67 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 7.498 ms 2 - 39 MB NPU DeepLabV3-Plus-MobileNet.onnx.zip
DeepLabV3-Plus-MobileNet float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 11.89 ms 19 - 19 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 11.937 ms 10 - 10 MB NPU DeepLabV3-Plus-MobileNet.onnx.zip
DeepLabV3-Plus-MobileNet w8a16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 22.273 ms 2 - 45 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a16 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 11.199 ms 2 - 57 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 8.832 ms 2 - 18 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 9.369 ms 2 - 45 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a16 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 43.995 ms 2 - 112 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a16 SA7255P ADP Qualcomm® SA7255P QNN_DLC 22.273 ms 2 - 45 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 8.834 ms 2 - 17 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a16 SA8295P ADP Qualcomm® SA8295P QNN_DLC 13.391 ms 2 - 52 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 8.825 ms 2 - 17 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a16 SA8775P ADP Qualcomm® SA8775P QNN_DLC 9.369 ms 2 - 45 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 8.841 ms 2 - 18 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 6.394 ms 2 - 58 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 133.467 ms 53 - 2953 MB NPU DeepLabV3-Plus-MobileNet.onnx.zip
DeepLabV3-Plus-MobileNet w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 5.209 ms 2 - 50 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 134.935 ms 100 - 1747 MB NPU DeepLabV3-Plus-MobileNet.onnx.zip
DeepLabV3-Plus-MobileNet w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 9.552 ms 19 - 19 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a16 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 179.765 ms 133 - 133 MB NPU DeepLabV3-Plus-MobileNet.onnx.zip
DeepLabV3-Plus-MobileNet w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 11.936 ms 0 - 35 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 10.623 ms 1 - 38 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 5.387 ms 0 - 52 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 6.462 ms 1 - 52 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 4.907 ms 0 - 17 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 4.123 ms 1 - 11 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 5.486 ms 0 - 35 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 4.944 ms 1 - 38 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) TFLITE 18.03 ms 0 - 42 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 19.849 ms 1 - 54 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 172.017 ms 3 - 6 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 11.936 ms 0 - 35 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 10.623 ms 1 - 38 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 4.91 ms 0 - 13 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 4.135 ms 1 - 11 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 7.203 ms 0 - 41 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 6.382 ms 1 - 45 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 4.894 ms 0 - 18 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 4.124 ms 1 - 12 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 5.486 ms 0 - 35 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 4.944 ms 1 - 38 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 4.899 ms 0 - 16 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 4.131 ms 1 - 12 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 124.508 ms 92 - 207 MB NPU DeepLabV3-Plus-MobileNet.onnx.zip
DeepLabV3-Plus-MobileNet w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 3.479 ms 0 - 49 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 2.857 ms 1 - 56 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 96.628 ms 85 - 1634 MB NPU DeepLabV3-Plus-MobileNet.onnx.zip
DeepLabV3-Plus-MobileNet w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 3.164 ms 0 - 41 MB NPU DeepLabV3-Plus-MobileNet.tflite
DeepLabV3-Plus-MobileNet w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 2.569 ms 1 - 45 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 97.314 ms 90 - 1259 MB NPU DeepLabV3-Plus-MobileNet.onnx.zip
DeepLabV3-Plus-MobileNet w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 4.57 ms 13 - 13 MB NPU DeepLabV3-Plus-MobileNet.dlc
DeepLabV3-Plus-MobileNet w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 118.39 ms 133 - 133 MB NPU DeepLabV3-Plus-MobileNet.onnx.zip

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.deeplabv3_plus_mobilenet.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.deeplabv3_plus_mobilenet.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.deeplabv3_plus_mobilenet.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.deeplabv3_plus_mobilenet import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.deeplabv3_plus_mobilenet.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.deeplabv3_plus_mobilenet.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on DeepLabV3-Plus-MobileNet's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of DeepLabV3-Plus-MobileNet can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month
242
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support