qaihm-bot commited on
Commit
54faf13
·
verified ·
1 Parent(s): 9c8ff3e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +321 -0
README.md ADDED
@@ -0,0 +1,321 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: apache-2.0
4
+ tags:
5
+ - real_time
6
+ - android
7
+ pipeline_tag: object-detection
8
+
9
+ ---
10
+
11
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/deepbox/web-assets/model_demo.png)
12
+
13
+ # 3D-Deep-BOX: Optimized for Mobile Deployment
14
+ ## Real-time 3D object detection
15
+
16
+
17
+ 3D Deep Box is a machine learning model that predicts 3D bounding boxes and classes of objects in an image.
18
+
19
+ This model is an implementation of 3D-Deep-BOX found [here](https://github.com/skhadem/3D-BoundingBox/).
20
+
21
+
22
+ This repository provides scripts to run 3D-Deep-BOX on Qualcomm® devices.
23
+ More details on model performance across various devices, can be found
24
+ [here](https://aihub.qualcomm.com/models/deepbox).
25
+
26
+
27
+ ### Model Details
28
+
29
+ - **Model Type:** Object detection
30
+ - **Model Stats:**
31
+ - Model checkpoint: YOLOv3-tiny
32
+ - Input resolution(YOLO): 224x640
33
+ - Number of parameters(YOLO): 8.85M
34
+ - Model size(YOLO): 37.3 MB
35
+ - Input resolution(VGG): 224x224
36
+ - Number of parameters(VGG): 144M
37
+ - Model size(VGG): 175.9 MB
38
+
39
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
40
+ |---|---|---|---|---|---|---|---|---|
41
+ | Yolo | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 22.238 ms | 0 - 59 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.tflite) |
42
+ | Yolo | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 2.992 ms | 2 - 4 MB | FP16 | NPU | [3D-Deep-BOX.so](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.so) |
43
+ | Yolo | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 5.749 ms | 0 - 51 MB | FP16 | NPU | [3D-Deep-BOX.onnx](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.onnx) |
44
+ | Yolo | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 16.668 ms | 0 - 39 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.tflite) |
45
+ | Yolo | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.085 ms | 0 - 15 MB | FP16 | NPU | [3D-Deep-BOX.so](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.so) |
46
+ | Yolo | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.781 ms | 0 - 31 MB | FP16 | NPU | [3D-Deep-BOX.onnx](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.onnx) |
47
+ | Yolo | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 14.794 ms | 0 - 33 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.tflite) |
48
+ | Yolo | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.519 ms | 2 - 20 MB | FP16 | NPU | Use Export Script |
49
+ | Yolo | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.697 ms | 2 - 27 MB | FP16 | NPU | [3D-Deep-BOX.onnx](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.onnx) |
50
+ | Yolo | SA7255P ADP | SA7255P | TFLITE | 67.992 ms | 0 - 26 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.tflite) |
51
+ | Yolo | SA7255P ADP | SA7255P | QNN | 35.592 ms | 2 - 9 MB | FP16 | NPU | Use Export Script |
52
+ | Yolo | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 22.79 ms | 0 - 68 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.tflite) |
53
+ | Yolo | SA8255 (Proxy) | SA8255P Proxy | QNN | 2.993 ms | 2 - 4 MB | FP16 | NPU | Use Export Script |
54
+ | Yolo | SA8295P ADP | SA8295P | TFLITE | 24.177 ms | 0 - 28 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.tflite) |
55
+ | Yolo | SA8295P ADP | SA8295P | QNN | 4.686 ms | 2 - 12 MB | FP16 | NPU | Use Export Script |
56
+ | Yolo | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 22.426 ms | 0 - 68 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.tflite) |
57
+ | Yolo | SA8650 (Proxy) | SA8650P Proxy | QNN | 3.01 ms | 2 - 4 MB | FP16 | NPU | Use Export Script |
58
+ | Yolo | SA8775P ADP | SA8775P | TFLITE | 27.588 ms | 0 - 26 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.tflite) |
59
+ | Yolo | SA8775P ADP | SA8775P | QNN | 4.599 ms | 2 - 9 MB | FP16 | NPU | Use Export Script |
60
+ | Yolo | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 67.992 ms | 0 - 26 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.tflite) |
61
+ | Yolo | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 35.592 ms | 2 - 9 MB | FP16 | NPU | Use Export Script |
62
+ | Yolo | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 22.471 ms | 0 - 78 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.tflite) |
63
+ | Yolo | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 2.999 ms | 2 - 5 MB | FP16 | NPU | Use Export Script |
64
+ | Yolo | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 27.588 ms | 0 - 26 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.tflite) |
65
+ | Yolo | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 4.599 ms | 2 - 9 MB | FP16 | NPU | Use Export Script |
66
+ | Yolo | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 22.488 ms | 0 - 37 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.tflite) |
67
+ | Yolo | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 4.033 ms | 2 - 21 MB | FP16 | NPU | Use Export Script |
68
+ | Yolo | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 3.126 ms | 2 - 2 MB | FP16 | NPU | Use Export Script |
69
+ | Yolo | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.548 ms | 10 - 10 MB | FP16 | NPU | [3D-Deep-BOX.onnx](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/Yolo.onnx) |
70
+ | VGG | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 4.776 ms | 0 - 616 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.tflite) |
71
+ | VGG | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 4.873 ms | 1 - 3 MB | FP16 | NPU | [3D-Deep-BOX.so](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.so) |
72
+ | VGG | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 5.567 ms | 0 - 553 MB | FP16 | NPU | [3D-Deep-BOX.onnx](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.onnx) |
73
+ | VGG | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 3.581 ms | 0 - 36 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.tflite) |
74
+ | VGG | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 3.842 ms | 0 - 15 MB | FP16 | NPU | [3D-Deep-BOX.so](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.so) |
75
+ | VGG | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.37 ms | 1 - 39 MB | FP16 | NPU | [3D-Deep-BOX.onnx](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.onnx) |
76
+ | VGG | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 2.982 ms | 0 - 30 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.tflite) |
77
+ | VGG | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 3.561 ms | 1 - 31 MB | FP16 | NPU | Use Export Script |
78
+ | VGG | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.191 ms | 1 - 33 MB | FP16 | NPU | [3D-Deep-BOX.onnx](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.onnx) |
79
+ | VGG | SA7255P ADP | SA7255P | TFLITE | 257.893 ms | 0 - 24 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.tflite) |
80
+ | VGG | SA7255P ADP | SA7255P | QNN | 258.233 ms | 1 - 8 MB | FP16 | NPU | Use Export Script |
81
+ | VGG | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 4.77 ms | 0 - 612 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.tflite) |
82
+ | VGG | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.865 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
83
+ | VGG | SA8295P ADP | SA8295P | TFLITE | 9.774 ms | 0 - 26 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.tflite) |
84
+ | VGG | SA8295P ADP | SA8295P | QNN | 9.966 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
85
+ | VGG | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 4.778 ms | 0 - 612 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.tflite) |
86
+ | VGG | SA8650 (Proxy) | SA8650P Proxy | QNN | 4.865 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
87
+ | VGG | SA8775P ADP | SA8775P | TFLITE | 10.858 ms | 0 - 24 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.tflite) |
88
+ | VGG | SA8775P ADP | SA8775P | QNN | 11.071 ms | 1 - 8 MB | FP16 | NPU | Use Export Script |
89
+ | VGG | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 257.893 ms | 0 - 24 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.tflite) |
90
+ | VGG | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 258.233 ms | 1 - 8 MB | FP16 | NPU | Use Export Script |
91
+ | VGG | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 4.766 ms | 0 - 612 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.tflite) |
92
+ | VGG | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 4.857 ms | 1 - 4 MB | FP16 | NPU | Use Export Script |
93
+ | VGG | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 10.858 ms | 0 - 24 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.tflite) |
94
+ | VGG | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 11.071 ms | 1 - 8 MB | FP16 | NPU | Use Export Script |
95
+ | VGG | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 8.327 ms | 0 - 32 MB | FP16 | NPU | [3D-Deep-BOX.tflite](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.tflite) |
96
+ | VGG | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 8.448 ms | 1 - 33 MB | FP16 | NPU | Use Export Script |
97
+ | VGG | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 5.078 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
98
+ | VGG | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 5.547 ms | 90 - 90 MB | FP16 | NPU | [3D-Deep-BOX.onnx](https://huggingface.co/qualcomm/3D-Deep-BOX/blob/main/VGG.onnx) |
99
+
100
+
101
+
102
+
103
+ ## Installation
104
+
105
+
106
+ Install the package via pip:
107
+ ```bash
108
+ pip install "qai-hub-models[deepbox]"
109
+ ```
110
+
111
+
112
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
113
+
114
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
115
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
116
+
117
+ With this API token, you can configure your client to run models on the cloud
118
+ hosted devices.
119
+ ```bash
120
+ qai-hub configure --api_token API_TOKEN
121
+ ```
122
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
123
+
124
+
125
+
126
+ ## Demo off target
127
+
128
+ The package contains a simple end-to-end demo that downloads pre-trained
129
+ weights and runs this model on a sample input.
130
+
131
+ ```bash
132
+ python -m qai_hub_models.models.deepbox.demo
133
+ ```
134
+
135
+ The above demo runs a reference implementation of pre-processing, model
136
+ inference, and post processing.
137
+
138
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
139
+ environment, please add the following to your cell (instead of the above).
140
+ ```
141
+ %run -m qai_hub_models.models.deepbox.demo
142
+ ```
143
+
144
+
145
+ ### Run model on a cloud-hosted device
146
+
147
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
148
+ device. This script does the following:
149
+ * Performance check on-device on a cloud-hosted device
150
+ * Downloads compiled assets that can be deployed on-device for Android.
151
+ * Accuracy check between PyTorch and on-device outputs.
152
+
153
+ ```bash
154
+ python -m qai_hub_models.models.deepbox.export
155
+ ```
156
+ ```
157
+ Profiling Results
158
+ ------------------------------------------------------------
159
+ Yolo
160
+ Device : Samsung Galaxy S23 (13)
161
+ Runtime : TFLITE
162
+ Estimated inference time (ms) : 22.2
163
+ Estimated peak memory usage (MB): [0, 59]
164
+ Total # Ops : 128
165
+ Compute Unit(s) : NPU (128 ops)
166
+
167
+ ------------------------------------------------------------
168
+ VGG
169
+ Device : Samsung Galaxy S23 (13)
170
+ Runtime : TFLITE
171
+ Estimated inference time (ms) : 4.8
172
+ Estimated peak memory usage (MB): [0, 616]
173
+ Total # Ops : 40
174
+ Compute Unit(s) : NPU (40 ops)
175
+ ```
176
+
177
+
178
+ ## How does this work?
179
+
180
+ This [export script](https://aihub.qualcomm.com/models/deepbox/qai_hub_models/models/3D-Deep-BOX/export.py)
181
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
182
+ on-device. Lets go through each step below in detail:
183
+
184
+ Step 1: **Compile model for on-device deployment**
185
+
186
+ To compile a PyTorch model for on-device deployment, we first trace the model
187
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
188
+
189
+ ```python
190
+ import torch
191
+
192
+ import qai_hub as hub
193
+ from qai_hub_models.models.deepbox import Model
194
+
195
+ # Load the model
196
+ model = Model.from_pretrained()
197
+ bbox2D_dectector_model = model.bbox2D_dectector
198
+ bbox3D_dectector_model = model.bbox3D_dectector
199
+
200
+ # Device
201
+ device = hub.Device("Samsung Galaxy S23")
202
+
203
+ # Trace model
204
+ bbox2D_dectector_input_shape = bbox2D_dectector_model.get_input_spec()
205
+ bbox2D_dectector_sample_inputs = bbox2D_dectector_model.sample_inputs()
206
+
207
+ traced_bbox2D_dectector_model = torch.jit.trace(bbox2D_dectector_model, [torch.tensor(data[0]) for _, data in bbox2D_dectector_sample_inputs.items()])
208
+
209
+ # Compile model on a specific device
210
+ bbox2D_dectector_compile_job = hub.submit_compile_job(
211
+ model=traced_bbox2D_dectector_model ,
212
+ device=device,
213
+ input_specs=bbox2D_dectector_model.get_input_spec(),
214
+ )
215
+
216
+ # Get target model to run on-device
217
+ bbox2D_dectector_target_model = bbox2D_dectector_compile_job.get_target_model()
218
+ # Trace model
219
+ bbox3D_dectector_input_shape = bbox3D_dectector_model.get_input_spec()
220
+ bbox3D_dectector_sample_inputs = bbox3D_dectector_model.sample_inputs()
221
+
222
+ traced_bbox3D_dectector_model = torch.jit.trace(bbox3D_dectector_model, [torch.tensor(data[0]) for _, data in bbox3D_dectector_sample_inputs.items()])
223
+
224
+ # Compile model on a specific device
225
+ bbox3D_dectector_compile_job = hub.submit_compile_job(
226
+ model=traced_bbox3D_dectector_model ,
227
+ device=device,
228
+ input_specs=bbox3D_dectector_model.get_input_spec(),
229
+ )
230
+
231
+ # Get target model to run on-device
232
+ bbox3D_dectector_target_model = bbox3D_dectector_compile_job.get_target_model()
233
+
234
+ ```
235
+
236
+
237
+ Step 2: **Performance profiling on cloud-hosted device**
238
+
239
+ After compiling models from step 1. Models can be profiled model on-device using the
240
+ `target_model`. Note that this scripts runs the model on a device automatically
241
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
242
+ provided job URL to view a variety of on-device performance metrics.
243
+ ```python
244
+ bbox2D_dectector_profile_job = hub.submit_profile_job(
245
+ model=bbox2D_dectector_target_model,
246
+ device=device,
247
+ )
248
+ bbox3D_dectector_profile_job = hub.submit_profile_job(
249
+ model=bbox3D_dectector_target_model,
250
+ device=device,
251
+ )
252
+
253
+ ```
254
+
255
+ Step 3: **Verify on-device accuracy**
256
+
257
+ To verify the accuracy of the model on-device, you can run on-device inference
258
+ on sample input data on the same cloud hosted device.
259
+ ```python
260
+ bbox2D_dectector_input_data = bbox2D_dectector_model.sample_inputs()
261
+ bbox2D_dectector_inference_job = hub.submit_inference_job(
262
+ model=bbox2D_dectector_target_model,
263
+ device=device,
264
+ inputs=bbox2D_dectector_input_data,
265
+ )
266
+ bbox2D_dectector_inference_job.download_output_data()
267
+ bbox3D_dectector_input_data = bbox3D_dectector_model.sample_inputs()
268
+ bbox3D_dectector_inference_job = hub.submit_inference_job(
269
+ model=bbox3D_dectector_target_model,
270
+ device=device,
271
+ inputs=bbox3D_dectector_input_data,
272
+ )
273
+ bbox3D_dectector_inference_job.download_output_data()
274
+
275
+ ```
276
+ With the output of the model, you can compute like PSNR, relative errors or
277
+ spot check the output with expected output.
278
+
279
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
280
+ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
281
+
282
+
283
+
284
+
285
+ ## Deploying compiled model to Android
286
+
287
+
288
+ The models can be deployed using multiple runtimes:
289
+ - TensorFlow Lite (`.tflite` export): [This
290
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
291
+ guide to deploy the .tflite model in an Android application.
292
+
293
+
294
+ - QNN (`.so` export ): This [sample
295
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
296
+ provides instructions on how to use the `.so` shared library in an Android application.
297
+
298
+
299
+ ## View on Qualcomm® AI Hub
300
+ Get more details on 3D-Deep-BOX's performance across various devices [here](https://aihub.qualcomm.com/models/deepbox).
301
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
302
+
303
+
304
+ ## License
305
+ * The license for the original implementation of 3D-Deep-BOX can be found
306
+ [here](https://github.com/skhadem/3D-BoundingBox/blob/master/LICENSE).
307
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
308
+
309
+
310
+
311
+ ## References
312
+ * [3D Bounding Box Estimation Using Deep Learning and Geometry](https://arxiv.org/abs/1612.00496)
313
+ * [Source Model Implementation](https://github.com/skhadem/3D-BoundingBox/)
314
+
315
+
316
+
317
+ ## Community
318
+ * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
319
+ * For questions or feedback please [reach out to us](mailto:[email protected]).
320
+
321
+