3D-Deep-BOX: Optimized for Mobile Deployment

Real-time 3D object detection

3D Deep Box is a machine learning model that predicts 3D bounding boxes and classes of objects in an image.

This model is an implementation of 3D-Deep-BOX found here.

This repository provides scripts to run 3D-Deep-BOX on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Object detection
  • Model Stats:
    • Model checkpoint: YOLOv3-tiny
    • Input resolution(YOLO): 224x640
    • Number of parameters(YOLO): 8.85M
    • Model size(YOLO): 37.3 MB
    • Input resolution(VGG): 224x224
    • Number of parameters(VGG): 144M
    • Model size(VGG): 175.9 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
Yolo Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 22.214 ms 0 - 130 MB FP16 NPU 3D-Deep-BOX.tflite
Yolo Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 2.435 ms 2 - 4 MB FP16 NPU 3D-Deep-BOX.so
Yolo Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 5.258 ms 0 - 65 MB FP16 NPU 3D-Deep-BOX.onnx
Yolo Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 16.453 ms 10 - 68 MB FP16 NPU 3D-Deep-BOX.tflite
Yolo Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 1.706 ms 2 - 20 MB FP16 NPU 3D-Deep-BOX.so
Yolo Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 3.739 ms 0 - 23 MB FP16 NPU 3D-Deep-BOX.onnx
Yolo Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 17.131 ms 0 - 36 MB FP16 NPU 3D-Deep-BOX.tflite
Yolo Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 2.114 ms 2 - 21 MB FP16 NPU Use Export Script
Yolo Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 4.408 ms 1 - 19 MB FP16 NPU 3D-Deep-BOX.onnx
Yolo SA7255P ADP SA7255P TFLITE 68.046 ms 0 - 29 MB FP16 NPU 3D-Deep-BOX.tflite
Yolo SA7255P ADP SA7255P QNN 34.578 ms 2 - 9 MB FP16 NPU Use Export Script
Yolo SA8255 (Proxy) SA8255P Proxy TFLITE 22.614 ms 0 - 140 MB FP16 NPU 3D-Deep-BOX.tflite
Yolo SA8255 (Proxy) SA8255P Proxy QNN 2.433 ms 2 - 4 MB FP16 NPU Use Export Script
Yolo SA8295P ADP SA8295P TFLITE 23.738 ms 0 - 32 MB FP16 NPU 3D-Deep-BOX.tflite
Yolo SA8295P ADP SA8295P QNN 3.469 ms 0 - 14 MB FP16 NPU Use Export Script
Yolo SA8650 (Proxy) SA8650P Proxy TFLITE 22.518 ms 0 - 136 MB FP16 NPU 3D-Deep-BOX.tflite
Yolo SA8650 (Proxy) SA8650P Proxy QNN 2.459 ms 2 - 4 MB FP16 NPU Use Export Script
Yolo SA8775P ADP SA8775P TFLITE 27.985 ms 0 - 30 MB FP16 NPU 3D-Deep-BOX.tflite
Yolo SA8775P ADP SA8775P QNN 3.871 ms 0 - 10 MB FP16 NPU Use Export Script
Yolo QCS8275 (Proxy) QCS8275 Proxy TFLITE 68.046 ms 0 - 29 MB FP16 NPU 3D-Deep-BOX.tflite
Yolo QCS8275 (Proxy) QCS8275 Proxy QNN 34.578 ms 2 - 9 MB FP16 NPU Use Export Script
Yolo QCS8550 (Proxy) QCS8550 Proxy TFLITE 22.036 ms 0 - 137 MB FP16 NPU 3D-Deep-BOX.tflite
Yolo QCS8550 (Proxy) QCS8550 Proxy QNN 2.431 ms 2 - 4 MB FP16 NPU Use Export Script
Yolo QCS9075 (Proxy) QCS9075 Proxy TFLITE 27.985 ms 0 - 30 MB FP16 NPU 3D-Deep-BOX.tflite
Yolo QCS9075 (Proxy) QCS9075 Proxy QNN 3.871 ms 0 - 10 MB FP16 NPU Use Export Script
Yolo QCS8450 (Proxy) QCS8450 Proxy TFLITE 22.427 ms 0 - 56 MB FP16 NPU 3D-Deep-BOX.tflite
Yolo QCS8450 (Proxy) QCS8450 Proxy QNN 3.192 ms 2 - 26 MB FP16 NPU Use Export Script
Yolo Snapdragon X Elite CRD Snapdragon® X Elite QNN 2.629 ms 2 - 2 MB FP16 NPU Use Export Script
Yolo Snapdragon X Elite CRD Snapdragon® X Elite ONNX 5.38 ms 3 - 3 MB FP16 NPU 3D-Deep-BOX.onnx
VGG Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 4.723 ms 0 - 674 MB FP16 NPU 3D-Deep-BOX.tflite
VGG Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 4.778 ms 1 - 3 MB FP16 NPU 3D-Deep-BOX.so
VGG Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 5.524 ms 0 - 283 MB FP16 NPU 3D-Deep-BOX.onnx
VGG Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 3.531 ms 0 - 125 MB FP16 NPU 3D-Deep-BOX.tflite
VGG Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 3.804 ms 1 - 19 MB FP16 NPU 3D-Deep-BOX.so
VGG Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 4.096 ms 0 - 78 MB FP16 NPU 3D-Deep-BOX.onnx
VGG Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 3.444 ms 0 - 81 MB FP16 NPU 3D-Deep-BOX.tflite
VGG Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 3.468 ms 1 - 77 MB FP16 NPU Use Export Script
VGG Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 3.821 ms 1 - 78 MB FP16 NPU 3D-Deep-BOX.onnx
VGG SA7255P ADP SA7255P TFLITE 257.89 ms 0 - 73 MB FP16 NPU 3D-Deep-BOX.tflite
VGG SA7255P ADP SA7255P QNN 257.979 ms 1 - 9 MB FP16 NPU Use Export Script
VGG SA8255 (Proxy) SA8255P Proxy TFLITE 4.716 ms 0 - 674 MB FP16 NPU 3D-Deep-BOX.tflite
VGG SA8255 (Proxy) SA8255P Proxy QNN 4.784 ms 0 - 2 MB FP16 NPU Use Export Script
VGG SA8295P ADP SA8295P TFLITE 9.756 ms 0 - 79 MB FP16 NPU 3D-Deep-BOX.tflite
VGG SA8295P ADP SA8295P QNN 9.895 ms 1 - 15 MB FP16 NPU Use Export Script
VGG SA8650 (Proxy) SA8650P Proxy TFLITE 4.731 ms 0 - 671 MB FP16 NPU 3D-Deep-BOX.tflite
VGG SA8650 (Proxy) SA8650P Proxy QNN 4.785 ms 1 - 2 MB FP16 NPU Use Export Script
VGG SA8775P ADP SA8775P TFLITE 10.778 ms 0 - 74 MB FP16 NPU 3D-Deep-BOX.tflite
VGG SA8775P ADP SA8775P QNN 10.89 ms 1 - 11 MB FP16 NPU Use Export Script
VGG QCS8275 (Proxy) QCS8275 Proxy TFLITE 257.89 ms 0 - 73 MB FP16 NPU 3D-Deep-BOX.tflite
VGG QCS8275 (Proxy) QCS8275 Proxy QNN 257.979 ms 1 - 9 MB FP16 NPU Use Export Script
VGG QCS8550 (Proxy) QCS8550 Proxy TFLITE 4.715 ms 0 - 689 MB FP16 NPU 3D-Deep-BOX.tflite
VGG QCS8550 (Proxy) QCS8550 Proxy QNN 4.777 ms 1 - 4 MB FP16 NPU Use Export Script
VGG QCS9075 (Proxy) QCS9075 Proxy TFLITE 10.778 ms 0 - 74 MB FP16 NPU 3D-Deep-BOX.tflite
VGG QCS9075 (Proxy) QCS9075 Proxy QNN 10.89 ms 1 - 11 MB FP16 NPU Use Export Script
VGG QCS8450 (Proxy) QCS8450 Proxy TFLITE 8.279 ms 0 - 126 MB FP16 NPU 3D-Deep-BOX.tflite
VGG QCS8450 (Proxy) QCS8450 Proxy QNN 8.876 ms 1 - 81 MB FP16 NPU Use Export Script
VGG Snapdragon X Elite CRD Snapdragon® X Elite QNN 5.008 ms 1 - 1 MB FP16 NPU Use Export Script
VGG Snapdragon X Elite CRD Snapdragon® X Elite ONNX 5.154 ms 89 - 89 MB FP16 NPU 3D-Deep-BOX.onnx

Installation

Install the package via pip:

pip install "qai-hub-models[deepbox]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.deepbox.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.deepbox.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.deepbox.export
Profiling Results
------------------------------------------------------------
Yolo
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 22.2                   
Estimated peak memory usage (MB): [0, 130]               
Total # Ops                     : 128                    
Compute Unit(s)                 : NPU (128 ops)          

------------------------------------------------------------
VGG
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 4.7                    
Estimated peak memory usage (MB): [0, 674]               
Total # Ops                     : 40                     
Compute Unit(s)                 : NPU (40 ops)           

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.deepbox import Model

# Load the model
model = Model.from_pretrained()
bbox2D_dectector_model = model.bbox2D_dectector
bbox3D_dectector_model = model.bbox3D_dectector

# Device
device = hub.Device("Samsung Galaxy S23")

# Trace model
bbox2D_dectector_input_shape = bbox2D_dectector_model.get_input_spec()
bbox2D_dectector_sample_inputs = bbox2D_dectector_model.sample_inputs()

traced_bbox2D_dectector_model = torch.jit.trace(bbox2D_dectector_model, [torch.tensor(data[0]) for _, data in bbox2D_dectector_sample_inputs.items()])

# Compile model on a specific device
bbox2D_dectector_compile_job = hub.submit_compile_job(
    model=traced_bbox2D_dectector_model ,
    device=device,
    input_specs=bbox2D_dectector_model.get_input_spec(),
)

# Get target model to run on-device
bbox2D_dectector_target_model = bbox2D_dectector_compile_job.get_target_model()
# Trace model
bbox3D_dectector_input_shape = bbox3D_dectector_model.get_input_spec()
bbox3D_dectector_sample_inputs = bbox3D_dectector_model.sample_inputs()

traced_bbox3D_dectector_model = torch.jit.trace(bbox3D_dectector_model, [torch.tensor(data[0]) for _, data in bbox3D_dectector_sample_inputs.items()])

# Compile model on a specific device
bbox3D_dectector_compile_job = hub.submit_compile_job(
    model=traced_bbox3D_dectector_model ,
    device=device,
    input_specs=bbox3D_dectector_model.get_input_spec(),
)

# Get target model to run on-device
bbox3D_dectector_target_model = bbox3D_dectector_compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

bbox2D_dectector_profile_job = hub.submit_profile_job(
    model=bbox2D_dectector_target_model,
    device=device,
)
bbox3D_dectector_profile_job = hub.submit_profile_job(
    model=bbox3D_dectector_target_model,
    device=device,
)

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

bbox2D_dectector_input_data = bbox2D_dectector_model.sample_inputs()
bbox2D_dectector_inference_job = hub.submit_inference_job(
    model=bbox2D_dectector_target_model,
    device=device,
    inputs=bbox2D_dectector_input_data,
)
bbox2D_dectector_inference_job.download_output_data()
bbox3D_dectector_input_data = bbox3D_dectector_model.sample_inputs()
bbox3D_dectector_inference_job = hub.submit_inference_job(
    model=bbox3D_dectector_target_model,
    device=device,
    inputs=bbox3D_dectector_input_data,
)
bbox3D_dectector_inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on 3D-Deep-BOX's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of 3D-Deep-BOX can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support object-detection models for pytorch library.