File size: 1,170 Bytes
64c128f b8a89d3 64c128f b8a89d3 64c128f b8a89d3 64c128f b8a89d3 64c128f b8a89d3 64c128f b8a89d3 64c128f b8a89d3 64c128f b8a89d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
---
library_name: transformers
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- prompt-injection
- injection
- security
- llm-security
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: mdeberta-v3-base-prompt-injection
results: []
---
# mdeberta-v3-base-prompt-injection
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on a combination of [jackhhao/jailbreak-classification](https://huggingface.co/datasets/jackhhao/jailbreak-classification), [deepset/prompt-injections](https://huggingface.co/datasets/deepset/prompt-injections/viewer/default/test?views%5B%5D=test), a custom datasets containing known attacks, and injections nested in legitimate content like websites and articles.
## Usage
```Python
from transformers import pipeline
classifier = pipeline(
"text-classification",
model="proventra/mdeberta-v3-base-prompt-injection"
)
print(classifier("Your text to scan"))
```
## Use in Proventra Core
[proventra-core](https://github.com/proventra/proventra-core) python library
check out [Proventra](https://www.proventra-ai.com) |