gasperpre commited on
Commit
b8a89d3
·
verified ·
1 Parent(s): 64c128f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -59
README.md CHANGED
@@ -3,6 +3,10 @@ library_name: transformers
3
  license: mit
4
  base_model: microsoft/mdeberta-v3-base
5
  tags:
 
 
 
 
6
  - generated_from_trainer
7
  metrics:
8
  - accuracy
@@ -14,70 +18,24 @@ model-index:
14
  results: []
15
  ---
16
 
17
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
- should probably proofread and complete it, then remove this comment. -->
19
-
20
  # mdeberta-v3-base-prompt-injection
21
 
22
- This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
23
- It achieves the following results on the evaluation set:
24
- - Loss: 0.2258
25
- - Accuracy: 0.9661
26
- - Precision: 0.9924
27
- - Recall: 0.9129
28
- - F1: 0.9510
29
-
30
- ## Model description
31
-
32
- More information needed
33
-
34
- ## Intended uses & limitations
35
-
36
- More information needed
37
-
38
- ## Training and evaluation data
39
-
40
- More information needed
41
-
42
- ## Training procedure
43
-
44
- ### Training hyperparameters
45
 
46
- The following hyperparameters were used during training:
47
- - learning_rate: 3e-05
48
- - train_batch_size: 9
49
- - eval_batch_size: 9
50
- - seed: 42
51
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
- - lr_scheduler_type: linear
53
- - lr_scheduler_warmup_ratio: 0.1
54
- - num_epochs: 9
55
 
56
- ### Training results
 
57
 
58
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
59
- |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
60
- | 0.4808 | 0.5556 | 200 | 0.2098 | 0.9435 | 0.9690 | 0.8711 | 0.9174 |
61
- | 0.2477 | 1.1111 | 400 | 0.2381 | 0.9423 | 0.9170 | 0.9233 | 0.9201 |
62
- | 0.1586 | 1.6667 | 600 | 0.2516 | 0.9511 | 0.9697 | 0.8920 | 0.9292 |
63
- | 0.1685 | 2.2222 | 800 | 0.2001 | 0.9561 | 0.9468 | 0.9303 | 0.9385 |
64
- | 0.1275 | 2.7778 | 1000 | 0.1993 | 0.9548 | 0.9772 | 0.8955 | 0.9345 |
65
- | 0.0755 | 3.3333 | 1200 | 0.2840 | 0.9473 | 0.9960 | 0.8571 | 0.9213 |
66
- | 0.0944 | 3.8889 | 1400 | 0.2488 | 0.9473 | 0.9960 | 0.8571 | 0.9213 |
67
- | 0.092 | 4.4444 | 1600 | 0.2071 | 0.9636 | 0.9886 | 0.9094 | 0.9474 |
68
- | 0.067 | 5.0 | 1800 | 0.2779 | 0.9586 | 0.9669 | 0.9164 | 0.9410 |
69
- | 0.0572 | 5.5556 | 2000 | 0.1707 | 0.9649 | 0.9924 | 0.9094 | 0.9491 |
70
- | 0.052 | 6.1111 | 2200 | 0.2173 | 0.9573 | 0.9961 | 0.8850 | 0.9373 |
71
- | 0.0487 | 6.6667 | 2400 | 0.1827 | 0.9699 | 0.9852 | 0.9303 | 0.9570 |
72
- | 0.038 | 7.2222 | 2600 | 0.1954 | 0.9686 | 0.9888 | 0.9233 | 0.9550 |
73
- | 0.0361 | 7.7778 | 2800 | 0.1816 | 0.9686 | 0.9816 | 0.9303 | 0.9553 |
74
- | 0.0417 | 8.3333 | 3000 | 0.2194 | 0.9661 | 0.9924 | 0.9129 | 0.9510 |
75
- | 0.0278 | 8.8889 | 3200 | 0.2258 | 0.9661 | 0.9924 | 0.9129 | 0.9510 |
76
 
 
 
77
 
78
- ### Framework versions
 
79
 
80
- - Transformers 4.51.3
81
- - Pytorch 2.6.0+cu124
82
- - Datasets 3.5.0
83
- - Tokenizers 0.21.1
 
3
  license: mit
4
  base_model: microsoft/mdeberta-v3-base
5
  tags:
6
+ - prompt-injection
7
+ - injection
8
+ - security
9
+ - llm-security
10
  - generated_from_trainer
11
  metrics:
12
  - accuracy
 
18
  results: []
19
  ---
20
 
 
 
 
21
  # mdeberta-v3-base-prompt-injection
22
 
23
+ This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on a combination of [jackhhao/jailbreak-classification](https://huggingface.co/datasets/jackhhao/jailbreak-classification), [deepset/prompt-injections](https://huggingface.co/datasets/deepset/prompt-injections/viewer/default/test?views%5B%5D=test), a custom datasets containing known attacks, and injections nested in legitimate content like websites and articles.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ ## Usage
 
 
 
 
 
 
 
 
26
 
27
+ ```Python
28
+ from transformers import pipeline
29
 
30
+ classifier = pipeline(
31
+ "text-classification",
32
+ model="proventra/mdeberta-v3-base-prompt-injection"
33
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
+ print(classifier("Your text to scan"))
36
+ ```
37
 
38
+ ## Use in Proventra Core
39
+ [proventra-core](https://github.com/proventra/proventra-core) python library
40
 
41
+ check out [Proventra](https://www.proventra-ai.com)