Proximus-2x7B-v1

Proximus-2x7B-v1 is a Mixure of Experts (MoE) made with the following models using LazyMergekit:

🧩 Configuration

base_model: mlabonne/NeuralHermes-2.5-Mistral-7B
experts:
  - source_model: beowolx/MistralHermes-CodePro-7B-v1
    positive_prompts:
      - "code"
      - "python"
      - "javascript"
      - "programming"
      - "algorithm"
  - source_model: anthonylx/Prox-MistralHermes-7B
    positive_prompts:
      - "cybersecurity"
      - "information security"
      - "network security"
      - "hacking"
      - "encryption"

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "anthonylx/Proximus-2x7B-v1"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
13
Safetensors
Model size
12.9B params
Tensor type
FP16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for preemware/Proximus-2x7B-v1

Quantizations
2 models