File size: 9,872 Bytes
03562ce
 
9d3ebbc
03562ce
 
a6be4c2
 
9d3ebbc
39157e5
 
03562ce
 
 
 
 
 
 
 
 
 
 
 
 
624a902
03562ce
 
624a902
03562ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39157e5
03562ce
 
 
 
 
 
 
 
9d3ebbc
 
 
 
 
 
 
 
 
 
03562ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f6622
03562ce
 
cb5f0b7
03562ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47d8577
5219c44
 
03562ce
 
 
 
 
 
 
 
47d8577
5219c44
 
03562ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import torch.nn as nn
from transformers import BertPreTrainedModel, BertModel, AutoTokenizer
from huggingface_hub import hf_hub_download
import torch
from tqdm import tqdm
from .colbert_configuration import ColBERTConfig
from .tokenization_utils import QueryTokenizer, DocTokenizer
import os


class NullContextManager(object):
    def __init__(self, dummy_resource=None):
        self.dummy_resource = dummy_resource
    def __enter__(self):
        return self.dummy_resource
    def __exit__(self, *args):
        pass

class MixedPrecisionManager():
    def __init__(self, activated):
        self.activated = activated

        if self.activated:
            self.scaler = torch.amp.GradScaler("cuda")

    def context(self):
        return torch.amp.autocast("cuda") if self.activated else NullContextManager()

    def backward(self, loss):
        if self.activated:
            self.scaler.scale(loss).backward()
        else:
            loss.backward()

    def step(self, colbert, optimizer, scheduler=None):
        if self.activated:
            self.scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(colbert.parameters(), 2.0, error_if_nonfinite=False)

            self.scaler.step(optimizer)
            self.scaler.update()
        else:
            torch.nn.utils.clip_grad_norm_(colbert.parameters(), 2.0)
            optimizer.step()
        
        if scheduler is not None:
            scheduler.step()

        optimizer.zero_grad()

class ConstBERT(BertPreTrainedModel):
    """
        Shallow wrapper around HuggingFace transformers. All new parameters should be defined at this level.

        This makes sure `{from,save}_pretrained` and `init_weights` are applied to new parameters correctly.
    """
    _keys_to_ignore_on_load_unexpected = [r"cls"]

    def __init__(self, config, colbert_config, verbose:int = 0):
        super().__init__(config)

        self.config = config
        self.dim = colbert_config.dim
        self.linear = nn.Linear(config.hidden_size, colbert_config.dim, bias=False)
        self.doc_project = nn.Linear(colbert_config.doc_maxlen, 32, bias=False)
        self.query_project = nn.Linear(colbert_config.query_maxlen, 64, bias=False)

        ## Download required tokenizer files from Hugging Face
        if not os.path.exists(os.path.join(colbert_config.name_or_path, "tokenizer.json")):
            hf_hub_download(repo_id=colbert_config.name_or_path, filename="tokenizer.json")
        if not os.path.exists(os.path.join(colbert_config.name_or_path, "vocab.txt")):
            hf_hub_download(repo_id=colbert_config.name_or_path, filename="vocab.txt")
        if not os.path.exists(os.path.join(colbert_config.name_or_path, "tokenizer_config.json")):
            hf_hub_download(repo_id=colbert_config.name_or_path, filename="tokenizer_config.json")
        if not os.path.exists(os.path.join(colbert_config.name_or_path, "special_tokens_map.json")):
            hf_hub_download(repo_id=colbert_config.name_or_path, filename="special_tokens_map.json")

        self.query_tokenizer = QueryTokenizer(colbert_config, verbose=verbose)
        self.doc_tokenizer = DocTokenizer(colbert_config)
        self.amp_manager = MixedPrecisionManager(True)

        self.raw_tokenizer = AutoTokenizer.from_pretrained(colbert_config.checkpoint)
        self.pad_token = self.raw_tokenizer.pad_token_id
        self.use_gpu = colbert_config.total_visible_gpus > 0

        setattr(self,self.base_model_prefix, BertModel(config))

        # if colbert_config.relu:
        #     self.score_scaler = nn.Linear(1, 1)

        self.init_weights()

        # if colbert_config.relu:
        #     self.score_scaler.weight.data.fill_(1.0)
        #     self.score_scaler.bias.data.fill_(-8.0)

    @property
    def LM(self):
        base_model_prefix = getattr(self, "base_model_prefix")
        return getattr(self, base_model_prefix)


    @classmethod
    def from_pretrained(cls, name_or_path, config=None, *args, **kwargs):
        colbert_config = ColBERTConfig(name_or_path)
        colbert_config = ColBERTConfig.from_existing(ColBERTConfig.load_from_checkpoint(name_or_path), colbert_config)
        obj = super().from_pretrained(name_or_path, colbert_config=colbert_config, config=config)
        obj.base = name_or_path

        return obj

    @staticmethod
    def raw_tokenizer_from_pretrained(name_or_path):
        obj = AutoTokenizer.from_pretrained(name_or_path)
        obj.base = name_or_path

        return obj
    

    def _query(self, input_ids, attention_mask):
        input_ids, attention_mask = input_ids.to(self.device), attention_mask.to(self.device)
        Q = self.bert(input_ids, attention_mask=attention_mask)[0]
        # Q = Q.permute(0, 2, 1) #(64, 128,32)
        # Q = self.query_project(Q) #(64, 128,8)
        # Q = Q.permute(0, 2, 1) #(64,8,128)
        Q = self.linear(Q)
        # mask = torch.ones(Q.shape[0], Q.shape[1], device=self.device).unsqueeze(2).float()

        mask = torch.tensor(self.mask(input_ids, skiplist=[]), device=self.device).unsqueeze(2).float()
        Q = Q * mask

        return torch.nn.functional.normalize(Q, p=2, dim=2)

    def _doc(self, input_ids, attention_mask, keep_dims=True):
        assert keep_dims in [True, False, 'return_mask']

        input_ids, attention_mask = input_ids.to(self.device), attention_mask.to(self.device)
        D = self.bert(input_ids, attention_mask=attention_mask)[0]
        D = D.permute(0, 2, 1) #(64, 128,180)
        D = self.doc_project(D) #(64, 128,16)
        D = D.permute(0, 2, 1) #(64,16,128)
        D = self.linear(D)
        mask = torch.ones(D.shape[0], D.shape[1], device=self.device).unsqueeze(2).float()

        # mask = torch.tensor(self.mask(input_ids, skiplist=self.skiplist), device=self.device).unsqueeze(2).float()
        D = D * mask        
        D = torch.nn.functional.normalize(D, p=2, dim=2)
        if self.use_gpu:
            D = D.half()

        if keep_dims is False:
            D, mask = D.cpu(), mask.bool().cpu().squeeze(-1)
            D = [d[mask[idx]] for idx, d in enumerate(D)]

        elif keep_dims == 'return_mask':
            return D, mask.bool()

        return D

    def mask(self, input_ids, skiplist):
        mask = [[(x not in skiplist) and (x != self.pad_token) for x in d] for d in input_ids.cpu().tolist()]
        return mask

    def query(self, *args, to_cpu=False, **kw_args):
        with torch.no_grad():
            with self.amp_manager.context():
                Q = self._query(*args, **kw_args)
                return Q.cpu() if to_cpu else Q

    def doc(self, *args, to_cpu=False, **kw_args):
        with torch.no_grad():
            with self.amp_manager.context():
                D = self._doc(*args, **kw_args)

                if to_cpu:
                    return (D[0].cpu(), *D[1:]) if isinstance(D, tuple) else D.cpu()

                return D

    def encode_queries(self, queries, bsize=None, to_cpu=False, context=None, full_length_search=False):
        if type(queries) == str:
            queries = [queries]
        if bsize:
            batches = self.query_tokenizer.tensorize(queries, context=context, bsize=bsize, full_length_search=full_length_search)
            batches = [self.query(input_ids, attention_mask, to_cpu=to_cpu) for input_ids, attention_mask in batches]
            return torch.cat(batches)

        input_ids, attention_mask = self.query_tokenizer.tensorize(queries, context=context, full_length_search=full_length_search)
        return self.query(input_ids, attention_mask)

    def encode_documents(self, docs, bsize=None, keep_dims=True, to_cpu=False, showprogress=False, return_tokens=False):
        if type(docs) == str:
            docs = [docs]
        assert keep_dims in [True, False, 'flatten']

        if bsize:
            text_batches, reverse_indices = self.doc_tokenizer.tensorize(docs, bsize=bsize)

            returned_text = []
            if return_tokens:
                returned_text = [text for batch in text_batches for text in batch[0]]
                returned_text = [returned_text[idx] for idx in reverse_indices.tolist()]
                returned_text = [returned_text]

            keep_dims_ = 'return_mask' if keep_dims == 'flatten' else keep_dims
            batches = [self.doc(input_ids, attention_mask, keep_dims=keep_dims_, to_cpu=to_cpu)
                       for input_ids, attention_mask in tqdm(text_batches, disable=not showprogress)]

            if keep_dims is True:
                D = _stack_3D_tensors(batches)
                return (D[reverse_indices], *returned_text)

            elif keep_dims == 'flatten':
                D, mask = [], []

                for D_, mask_ in batches:
                    D.append(D_)
                    mask.append(mask_)

                D, mask = torch.cat(D)[reverse_indices], torch.cat(mask)[reverse_indices]

                doclens = mask.squeeze(-1).sum(-1).tolist()

                D = D.view(-1, self.colbert_config.dim)
                D = D[mask.bool().flatten()].cpu()

                return (D, doclens, *returned_text)

            assert keep_dims is False

            D = [d for batch in batches for d in batch]
            return ([D[idx] for idx in reverse_indices.tolist()], *returned_text)

        input_ids, attention_mask = self.doc_tokenizer.tensorize(docs)
        return self.doc(input_ids, attention_mask, keep_dims=keep_dims, to_cpu=to_cpu)

def _stack_3D_tensors(groups):
    bsize = sum([x.size(0) for x in groups])
    maxlen = max([x.size(1) for x in groups])
    hdim = groups[0].size(2)

    output = torch.zeros(bsize, maxlen, hdim, device=groups[0].device, dtype=groups[0].dtype)

    offset = 0
    for x in groups:
        endpos = offset + x.size(0)
        output[offset:endpos, :x.size(1)] = x
        offset = endpos

    return output