caesar-one commited on
Commit
03562ce
·
verified ·
1 Parent(s): 8ef93bf

Upload ConstBERT

Browse files
Files changed (4) hide show
  1. README.md +199 -0
  2. config.json +29 -0
  3. model.safetensors +3 -0
  4. modeling.py +235 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "constbert/",
3
+ "architectures": [
4
+ "ConstBERT"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "auto_map": {
8
+ "AutoModel": "modeling.ConstBERT"
9
+ },
10
+ "classifier_dropout": null,
11
+ "gradient_checkpointing": false,
12
+ "hidden_act": "gelu",
13
+ "hidden_dropout_prob": 0.1,
14
+ "hidden_size": 768,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "layer_norm_eps": 1e-12,
18
+ "max_position_embeddings": 512,
19
+ "model_type": "bert",
20
+ "num_attention_heads": 12,
21
+ "num_hidden_layers": 12,
22
+ "pad_token_id": 0,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.48.1",
26
+ "type_vocab_size": 2,
27
+ "use_cache": true,
28
+ "vocab_size": 30522
29
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e63f29e724efa1b9461cdc11af501c0c0fc09ac8c2c334ebf6e5dc4e45e422be
3
+ size 438386000
modeling.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from transformers import BertPreTrainedModel, BertModel, AutoTokenizer
3
+ import torch
4
+ from tqdm import tqdm
5
+ from transformers import AutoTokenizer
6
+ from constbert.colbert_configuration import ColBERTConfig
7
+ from constbert.tokenization_utils import QueryTokenizer, DocTokenizer
8
+
9
+
10
+ class NullContextManager(object):
11
+ def __init__(self, dummy_resource=None):
12
+ self.dummy_resource = dummy_resource
13
+ def __enter__(self):
14
+ return self.dummy_resource
15
+ def __exit__(self, *args):
16
+ pass
17
+
18
+ class MixedPrecisionManager():
19
+ def __init__(self, activated):
20
+ self.activated = activated
21
+
22
+ if self.activated:
23
+ self.scaler = torch.cuda.amp.GradScaler()
24
+
25
+ def context(self):
26
+ return torch.cuda.amp.autocast() if self.activated else NullContextManager()
27
+
28
+ def backward(self, loss):
29
+ if self.activated:
30
+ self.scaler.scale(loss).backward()
31
+ else:
32
+ loss.backward()
33
+
34
+ def step(self, colbert, optimizer, scheduler=None):
35
+ if self.activated:
36
+ self.scaler.unscale_(optimizer)
37
+ torch.nn.utils.clip_grad_norm_(colbert.parameters(), 2.0, error_if_nonfinite=False)
38
+
39
+ self.scaler.step(optimizer)
40
+ self.scaler.update()
41
+ else:
42
+ torch.nn.utils.clip_grad_norm_(colbert.parameters(), 2.0)
43
+ optimizer.step()
44
+
45
+ if scheduler is not None:
46
+ scheduler.step()
47
+
48
+ optimizer.zero_grad()
49
+
50
+ class ConstBERT(BertPreTrainedModel):
51
+ """
52
+ Shallow wrapper around HuggingFace transformers. All new parameters should be defined at this level.
53
+
54
+ This makes sure `{from,save}_pretrained` and `init_weights` are applied to new parameters correctly.
55
+ """
56
+ _keys_to_ignore_on_load_unexpected = [r"cls"]
57
+
58
+ def __init__(self, config, colbert_config, verbose:int = 3):
59
+ super().__init__(config)
60
+
61
+ self.config = config
62
+ self.dim = colbert_config.dim
63
+ self.linear = nn.Linear(config.hidden_size, colbert_config.dim, bias=False)
64
+ self.doc_project = nn.Linear(colbert_config.doc_maxlen, 32, bias=False)
65
+ self.query_project = nn.Linear(colbert_config.query_maxlen, 64, bias=False)
66
+
67
+ self.query_tokenizer = QueryTokenizer(colbert_config, verbose=verbose)
68
+ self.doc_tokenizer = DocTokenizer(colbert_config)
69
+ self.amp_manager = MixedPrecisionManager(True)
70
+
71
+ self.raw_tokenizer = AutoTokenizer.from_pretrained(colbert_config.checkpoint)
72
+ self.pad_token = self.raw_tokenizer.pad_token_id
73
+ self.use_gpu = colbert_config.total_visible_gpus > 0
74
+
75
+ setattr(self,self.base_model_prefix, BertModel(config))
76
+
77
+ # if colbert_config.relu:
78
+ # self.score_scaler = nn.Linear(1, 1)
79
+
80
+ self.init_weights()
81
+
82
+ # if colbert_config.relu:
83
+ # self.score_scaler.weight.data.fill_(1.0)
84
+ # self.score_scaler.bias.data.fill_(-8.0)
85
+
86
+ @property
87
+ def LM(self):
88
+ base_model_prefix = getattr(self, "base_model_prefix")
89
+ return getattr(self, base_model_prefix)
90
+
91
+
92
+ @classmethod
93
+ def from_pretrained(cls, name_or_path):
94
+ colbert_config = ColBERTConfig(name_or_path)
95
+ colbert_config = ColBERTConfig.from_existing(ColBERTConfig.load_from_checkpoint(name_or_path), colbert_config)
96
+ obj = super().from_pretrained(name_or_path, colbert_config=colbert_config)
97
+ obj.base = name_or_path
98
+
99
+ return obj
100
+
101
+ @staticmethod
102
+ def raw_tokenizer_from_pretrained(name_or_path):
103
+ obj = AutoTokenizer.from_pretrained(name_or_path)
104
+ obj.base = name_or_path
105
+
106
+ return obj
107
+
108
+
109
+ def _query(self, input_ids, attention_mask):
110
+ input_ids, attention_mask = input_ids.to(self.device), attention_mask.to(self.device)
111
+ Q = self.bert(input_ids, attention_mask=attention_mask)[0]
112
+ # Q = Q.permute(0, 2, 1) #(64, 128,32)
113
+ # Q = self.query_project(Q) #(64, 128,8)
114
+ # Q = Q.permute(0, 2, 1) #(64,8,128)
115
+ Q = self.linear(Q)
116
+ # mask = torch.ones(Q.shape[0], Q.shape[1], device=self.device).unsqueeze(2).float()
117
+
118
+ mask = torch.tensor(self.mask(input_ids, skiplist=[]), device=self.device).unsqueeze(2).float()
119
+ Q = Q * mask
120
+
121
+ return torch.nn.functional.normalize(Q, p=2, dim=2)
122
+
123
+ def _doc(self, input_ids, attention_mask, keep_dims=True):
124
+ assert keep_dims in [True, False, 'return_mask']
125
+
126
+ input_ids, attention_mask = input_ids.to(self.device), attention_mask.to(self.device)
127
+ D = self.bert(input_ids, attention_mask=attention_mask)[0]
128
+ D = D.permute(0, 2, 1) #(64, 128,180)
129
+ D = self.doc_project(D) #(64, 128,16)
130
+ D = D.permute(0, 2, 1) #(64,16,128)
131
+ D = self.linear(D)
132
+ mask = torch.ones(D.shape[0], D.shape[1], device=self.device).unsqueeze(2).float()
133
+
134
+ # mask = torch.tensor(self.mask(input_ids, skiplist=self.skiplist), device=self.device).unsqueeze(2).float()
135
+ D = D * mask
136
+ D = torch.nn.functional.normalize(D, p=2, dim=2)
137
+ if self.use_gpu:
138
+ D = D.half()
139
+
140
+ if keep_dims is False:
141
+ D, mask = D.cpu(), mask.bool().cpu().squeeze(-1)
142
+ D = [d[mask[idx]] for idx, d in enumerate(D)]
143
+
144
+ elif keep_dims == 'return_mask':
145
+ return D, mask.bool()
146
+
147
+ return D
148
+
149
+ def mask(self, input_ids, skiplist):
150
+ mask = [[(x not in skiplist) and (x != self.pad_token) for x in d] for d in input_ids.cpu().tolist()]
151
+ return mask
152
+
153
+ def query(self, *args, to_cpu=False, **kw_args):
154
+ with torch.no_grad():
155
+ with self.amp_manager.context():
156
+ Q = self._query(*args, **kw_args)
157
+ return Q.cpu() if to_cpu else Q
158
+
159
+ def doc(self, *args, to_cpu=False, **kw_args):
160
+ with torch.no_grad():
161
+ with self.amp_manager.context():
162
+ D = self._doc(*args, **kw_args)
163
+
164
+ if to_cpu:
165
+ return (D[0].cpu(), *D[1:]) if isinstance(D, tuple) else D.cpu()
166
+
167
+ return D
168
+
169
+ def queryFromText(self, queries, bsize=None, to_cpu=False, context=None, full_length_search=False):
170
+ if bsize:
171
+ batches = self.query_tokenizer.tensorize(queries, context=context, bsize=bsize, full_length_search=full_length_search)
172
+ batches = [self.query(input_ids, attention_mask, to_cpu=to_cpu) for input_ids, attention_mask in batches]
173
+ return torch.cat(batches)
174
+
175
+ input_ids, attention_mask = self.query_tokenizer.tensorize(queries, context=context, full_length_search=full_length_search)
176
+ return self.query(input_ids, attention_mask)
177
+
178
+ def docFromText(self, docs, bsize=None, keep_dims=True, to_cpu=False, showprogress=False, return_tokens=False):
179
+ assert keep_dims in [True, False, 'flatten']
180
+
181
+ if bsize:
182
+ text_batches, reverse_indices = self.doc_tokenizer.tensorize(docs, bsize=bsize)
183
+
184
+ returned_text = []
185
+ if return_tokens:
186
+ returned_text = [text for batch in text_batches for text in batch[0]]
187
+ returned_text = [returned_text[idx] for idx in reverse_indices.tolist()]
188
+ returned_text = [returned_text]
189
+
190
+ keep_dims_ = 'return_mask' if keep_dims == 'flatten' else keep_dims
191
+ batches = [self.doc(input_ids, attention_mask, keep_dims=keep_dims_, to_cpu=to_cpu)
192
+ for input_ids, attention_mask in tqdm(text_batches, disable=not showprogress)]
193
+
194
+ if keep_dims is True:
195
+ D = _stack_3D_tensors(batches)
196
+ return (D[reverse_indices], *returned_text)
197
+
198
+ elif keep_dims == 'flatten':
199
+ D, mask = [], []
200
+
201
+ for D_, mask_ in batches:
202
+ D.append(D_)
203
+ mask.append(mask_)
204
+
205
+ D, mask = torch.cat(D)[reverse_indices], torch.cat(mask)[reverse_indices]
206
+
207
+ doclens = mask.squeeze(-1).sum(-1).tolist()
208
+
209
+ D = D.view(-1, self.colbert_config.dim)
210
+ D = D[mask.bool().flatten()].cpu()
211
+
212
+ return (D, doclens, *returned_text)
213
+
214
+ assert keep_dims is False
215
+
216
+ D = [d for batch in batches for d in batch]
217
+ return ([D[idx] for idx in reverse_indices.tolist()], *returned_text)
218
+
219
+ input_ids, attention_mask = self.doc_tokenizer.tensorize(docs)
220
+ return self.doc(input_ids, attention_mask, keep_dims=keep_dims, to_cpu=to_cpu)
221
+
222
+ def _stack_3D_tensors(groups):
223
+ bsize = sum([x.size(0) for x in groups])
224
+ maxlen = max([x.size(1) for x in groups])
225
+ hdim = groups[0].size(2)
226
+
227
+ output = torch.zeros(bsize, maxlen, hdim, device=groups[0].device, dtype=groups[0].dtype)
228
+
229
+ offset = 0
230
+ for x in groups:
231
+ endpos = offset + x.size(0)
232
+ output[offset:endpos, :x.size(1)] = x
233
+ offset = endpos
234
+
235
+ return output