metadata
license: mit
datasets:
- stanfordnlp/imdb
language:
- en
metrics:
- accuracy
base_model:
- google-bert/bert-base-uncased
pipeline_tag: text-classification
library_name: transformers
tags:
- code
- sentiment-analysis
- bert
- imdb
- text-classification
- nlp
BERT IMDb Sentiment Analysis Model
This repository contains a fine-tuned BERT model for sentiment analysis on IMDb movie reviews. The model classifies text as either Positive or Negative sentiment.
Live Demo: https://huggingface.co/spaces/philipobiorah/bert-sentiment-analysis
Model Details
- Base Model:
bert-base-uncased
- Dataset: IMDb Movie Reviews
- Task: Sentiment Analysis (Binary Classification)
- Fine-tuned on: IMDb dataset
- Labels:
0
: Negative1
: Positive
Usage
Load the Model in Python
from transformers import BertTokenizer, BertForSequenceClassification
import torch
model_name = "philipobiorah/bert-imdb-model"
# Load tokenizer and model
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertForSequenceClassification.from_pretrained(model_name)
# Define function for sentiment prediction with confidence score
def predict_sentiment(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
with torch.no_grad():
logits = model(**inputs).logits
# Convert logits to probabilities
probabilities = torch.nn.functional.softmax(logits, dim=1)[0]
# Get predicted class (0 = Negative, 1 = Positive)
sentiment_idx = probabilities.argmax().item()
confidence = probabilities[sentiment_idx].item() * 100 # Convert to percentage
sentiment_label = "Positive" if sentiment_idx == 1 else "Negative"
return {"sentiment": sentiment_label, "confidence": round(confidence, 2)}
# Test the model
result1 = predict_sentiment("This movie was absolutely fantastic!")
result2 = predict_sentiment("I really disliked this movie, it was terrible.")
print(f"Sentiment: {result1['sentiment']}, Confidence: {result1['confidence']}%")
print(f"Sentiment: {result2['sentiment']}, Confidence: {result2['confidence']}%")