|
import json |
|
import math |
|
import os |
|
from shutil import copyfile |
|
from typing import Any, Optional, Tuple |
|
|
|
import numpy as np |
|
|
|
|
|
from numba import njit |
|
from numba.core import types |
|
from numba.typed import Dict, List |
|
from transformers.tokenization_utils import PreTrainedTokenizer |
|
from transformers.utils import logging |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.jsonl"} |
|
logger = logging.get_logger(__name__) |
|
|
|
INVALID_SCORE = -20000000 |
|
UNKNOWN_SCORE = -10000000 |
|
|
|
TABLE_PIECE_LENGTH = 0 |
|
TABLE_TOKEN_ID = 1 |
|
TABLE_SCORE = 2 |
|
TABLE_PIECE_ID = 3 |
|
|
|
PATH_TOKEN_LENGTH = 0 |
|
PATH_TOKEN_ID = 1 |
|
PATH_NUM_TOKENS = 2 |
|
|
|
|
|
class AhoCorasick: |
|
def __init__(self) -> None: |
|
|
|
self._tokens: list[str] |
|
|
|
|
|
self._bytes: np.ndarray |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._to_suffix_id: Dict[types.int64, types.int32] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self._table: np.ndarray |
|
|
|
def build(self, vocab: list[Any]) -> None: |
|
self._bytes = np.zeros(256, dtype=np.int32) |
|
self._to_suffix_id = Dict.empty(key_type=types.int64, value_type=types.int32) |
|
|
|
|
|
|
|
|
|
|
|
|
|
suffix_to_score: dict[str, float] = {} |
|
token_to_token_id: dict[str, int] = {} |
|
self._tokens = [] |
|
for token_id, row in enumerate(vocab): |
|
assert isinstance(row[0], str), row |
|
assert isinstance(row[1], (int, float)), row |
|
|
|
token = str(row[0]) |
|
self._tokens.append(token) |
|
token_to_token_id[token] = token_id |
|
|
|
|
|
if len(row) > 2 and row[2] == "BYTE": |
|
assert len(token) == 6 and token.startswith("<0x") and token.endswith(">"), row[0] |
|
self._bytes[int(row[0][3:5], 16)] = token_id |
|
continue |
|
|
|
suffix_to_score[token] = float(row[1]) |
|
|
|
for i in range(1, len(token)): |
|
suffix_to_score[token[i:]] = suffix_to_score.get(token[i:], math.nan) |
|
|
|
|
|
for i in range(256): |
|
assert self._bytes[i] != 0, f"Byte token for <0x{i:02X}> is not set." |
|
|
|
|
|
suffixes = list(suffix_to_score.keys()) |
|
suffixes.append("") |
|
suffixes.sort(key=lambda x: x[::-1]) |
|
|
|
|
|
|
|
suffix_to_id: dict[str, int] = {} |
|
num_pieces = 0 |
|
for s in suffixes: |
|
suffix_to_id[s] = num_pieces |
|
if s != "": |
|
self._to_suffix_id[ord(s[0]) << 32 | suffix_to_id[s[1:]]] = np.int32(num_pieces) |
|
num_pieces += 1 + sum(s[:i] in suffix_to_score for i in range(1, len(s) + 1)) |
|
assert suffix_to_id[""] == 0, suffix_to_id[""] |
|
|
|
|
|
self._table = np.zeros((num_pieces, 4), dtype=np.int32) |
|
i = 0 |
|
for suffix in suffixes: |
|
|
|
for piece_length in range(len(suffix), 0, -1): |
|
piece = suffix[:piece_length] |
|
score = suffix_to_score.get(piece, None) |
|
if score is None: |
|
continue |
|
self._table[i, TABLE_PIECE_LENGTH] = piece_length |
|
self._table[i, TABLE_TOKEN_ID] = token_to_token_id.get(piece, -1) |
|
self._table[i, TABLE_SCORE] = round(score * 1e4) if math.isfinite(score) else INVALID_SCORE |
|
self._table[i, TABLE_PIECE_ID] = suffix_to_id[piece] |
|
i += 1 |
|
|
|
|
|
self._table[i, TABLE_PIECE_LENGTH] = 1 |
|
self._table[i, TABLE_TOKEN_ID] = -1 |
|
self._table[i, TABLE_SCORE] = UNKNOWN_SCORE |
|
i += 1 |
|
assert i == num_pieces, (i, num_pieces) |
|
|
|
@staticmethod |
|
@njit |
|
def _encode( |
|
to_suffix_id: Dict[types.int64, types.int32], |
|
table: np.ndarray, |
|
bytes: np.ndarray, |
|
data: np.ndarray, |
|
) -> np.ndarray: |
|
|
|
|
|
scores = np.full((len(data) + 1,), 2**60, dtype=np.int64) |
|
scores[-1] = 0 |
|
|
|
|
|
|
|
path = np.zeros((len(data) + 1, 3), dtype=np.int32) |
|
|
|
|
|
suffix_id = 0 |
|
|
|
|
|
for i in range(len(data) - 1, -1, -1): |
|
c = data[i] |
|
|
|
|
|
|
|
for p in range(suffix_id, len(table)): |
|
suffix_id = to_suffix_id.get(c << 32 | table[p, TABLE_PIECE_ID], np.int32(0)) |
|
|
|
if suffix_id > 0 or table[p, TABLE_SCORE] == UNKNOWN_SCORE: |
|
break |
|
|
|
|
|
|
|
|
|
for p in range(suffix_id, len(table)): |
|
score = table[p, TABLE_SCORE] |
|
if score > INVALID_SCORE: |
|
piece_length = table[p, TABLE_PIECE_LENGTH] |
|
s = scores[i + piece_length] - score |
|
if s < scores[i]: |
|
scores[i] = s |
|
path[i, PATH_TOKEN_LENGTH] = piece_length |
|
path[i, PATH_TOKEN_ID] = table[p, TABLE_TOKEN_ID] |
|
path[i, PATH_NUM_TOKENS] = path[i + piece_length, PATH_NUM_TOKENS] + 1 |
|
if score == UNKNOWN_SCORE: |
|
|
|
|
|
path[i, PATH_NUM_TOKENS] += (c >= 0x80) + (c >= 0x800) + (c >= 0x10000) |
|
|
|
|
|
if score == UNKNOWN_SCORE: |
|
break |
|
|
|
|
|
pos = 0 |
|
token_ids = np.zeros(path[0, PATH_NUM_TOKENS], dtype=np.int32) |
|
token_pos = 0 |
|
while pos < len(data): |
|
if path[pos, PATH_TOKEN_ID] >= 0: |
|
token_ids[token_pos] = path[pos, PATH_TOKEN_ID] |
|
token_pos += 1 |
|
else: |
|
|
|
c = data[pos] |
|
s = 1 + (c >= 0x80) + (c >= 0x800) + (c >= 0x10000) |
|
|
|
for i in range(s): |
|
b = c if s == 1 else (0xF00 >> s) & 0xFF if i == 0 else 0x80 |
|
token_ids[token_pos] = bytes[b | ((c >> (s - i - 1) * 6) & 0x3F)] |
|
token_pos += 1 |
|
|
|
|
|
assert path[pos, PATH_TOKEN_LENGTH] > 0, (pos, path[pos]) |
|
pos += path[pos, PATH_TOKEN_LENGTH] |
|
|
|
return token_ids |
|
|
|
def encode(self, data: str) -> np.ndarray: |
|
"""Encodes a string into a sequence of token IDs.""" |
|
return np.asarray( |
|
self._encode( |
|
self._to_suffix_id, |
|
self._table, |
|
self._bytes, |
|
|
|
|
|
np.frombuffer(data.encode("utf-32"), dtype=np.int32)[1:], |
|
) |
|
) |
|
|
|
def encode_as_tokens(self, data: str) -> list[str]: |
|
"""Encodes a string into a sequence of tokens.""" |
|
return [self._tokens[token_id] for token_id in self.encode(data)] |
|
|
|
|
|
class PlamoTokenizer(PreTrainedTokenizer): |
|
vocab_files_names = VOCAB_FILES_NAMES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
_save_files = [ |
|
"special_tokens_map.json", |
|
"tokenization_plamo.py", |
|
"tokenizer.jsonl", |
|
"tokenizer_config.json", |
|
] |
|
|
|
def __init__( |
|
self, |
|
vocab_file: str, |
|
unk_token: str = "<|plamo:unk|>", |
|
bos_token: str = "<|plamo:bos|>", |
|
eos_token: str = "<|plamo:eos|>", |
|
pad_token: str = "<|plamo:pad|>", |
|
cls_token: Optional[str] = None, |
|
sep_token: Optional[str] = None, |
|
mask_token: Optional[str] = None, |
|
clean_up_tokenization_spaces: bool = False, |
|
**kwargs: Any, |
|
) -> None: |
|
"""Tokenizer for PLaMo. |
|
|
|
Args: |
|
vocab_file (str): Vocabrary file path. |
|
unk_token (str): Unknown token. |
|
bos_token (str): Beginning of sentence token. |
|
eos_token (str): End of sentence token. |
|
pad_token (str): Padding token. |
|
cls_token (str): |
|
Classification token, to extract a summary of an input sequence leveraging self-attention along the |
|
full depth of the model. |
|
sep_token (str): Separation token, to separate context and query in an input sequence. |
|
mask_token (str): Mask token, to use when training a model with masked-language modeling. |
|
clean_up_tokenization_spaces (bool): Whether or not to clean up the tokenization spaces. |
|
num_threads (int): |
|
Number of threads. This value will be ignored if one of `PLAMO_TOKENIZER_NUM_THREADS` or |
|
`RAYON_NUM_THREADS` is set as an environment variable. |
|
""" |
|
if "add_bos_token" not in kwargs: |
|
kwargs["add_bos_token"] = False |
|
if "add_eos_token" not in kwargs: |
|
kwargs["add_eos_token"] = False |
|
self.data: list[Any] = [json.loads(line) for line in open(vocab_file, "r", encoding="utf-8")] |
|
self.vocab: dict[str, int] = {v[0]: i for i, v in enumerate(self.data)} |
|
self.aho_corasick = AhoCorasick() |
|
self.aho_corasick.build(self.data) |
|
self.vocab_file = vocab_file |
|
self.add_bos_token = kwargs["add_bos_token"] |
|
self.add_eos_token = kwargs["add_eos_token"] |
|
|
|
super().__init__( |
|
vocab_file=vocab_file, |
|
unk_token=unk_token, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
pad_token=pad_token, |
|
cls_token=cls_token, |
|
sep_token=sep_token, |
|
mask_token=mask_token, |
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces, |
|
**kwargs, |
|
) |
|
|
|
|
|
|
|
|
|
def __getstate__(self) -> dict[str, Any]: |
|
state = self.__dict__.copy() |
|
state["aho_corasick"] = None |
|
return state |
|
|
|
def __setstate__(self, d: dict[str, Any]) -> None: |
|
self.__dict__ = d |
|
self.aho_corasick = AhoCorasick() |
|
self.aho_corasick.build(self.data) |
|
|
|
@property |
|
def vocab_size(self) -> Any: |
|
"""Returns vocab size""" |
|
return len(self.data) |
|
|
|
def token_to_score(self, token: str) -> Optional[float]: |
|
"""Returns score of the token""" |
|
token_id = self.vocab.get(token, None) |
|
return None if token_id is None else self.data[token_id][1] |
|
|
|
def get_vocab(self) -> dict[str, int]: |
|
"""Returns vocab as a dict""" |
|
vocab = self.vocab.copy() |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def convert_tokens_to_string(self, tokens: List[str]) -> str: |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
return b"".join( |
|
[bytes([int(t[3:5], 16)]) if t.startswith("<0x") else t.encode("utf-8") for t in tokens] |
|
).decode("utf-8", errors="replace") |
|
|
|
def _tokenize(self, text: str) -> Any: |
|
"""Returns a tokenized string.""" |
|
return self.aho_corasick.encode_as_tokens(text) |
|
|
|
def _convert_token_to_id(self, token: str) -> Any: |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.vocab.get(token, 0) |
|
|
|
def _convert_id_to_token(self, index: int) -> Any: |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.data[index][0] |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
output = bos_token_id + token_ids_0 + eos_token_id |
|
|
|
if token_ids_1 is not None: |
|
output = output + bos_token_id + token_ids_1 + eos_token_id |
|
|
|
return output |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
""" |
|
Save the vocabulary and special tokens file to a directory. |
|
|
|
Args: |
|
save_directory (`str`): |
|
The directory in which to save the vocabulary. |
|
|
|
Returns: |
|
`Tuple(str)`: Paths to the files saved. |
|
""" |
|
if not os.path.isdir(save_directory): |
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory") |
|
return ("",) |
|
out_vocab_file = os.path.join( |
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] |
|
) |
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
elif not os.path.isfile(self.vocab_file): |
|
with open(out_vocab_file, "w") as f: |
|
for token in self.data: |
|
print(json.dumps(token, ensure_ascii=False), file=f) |
|
|
|
return (out_vocab_file,) |
|
|