File size: 16,888 Bytes
65176a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import json
import math
import os
from shutil import copyfile
from typing import Any, Optional, Tuple
import numpy as np
# NOTE: numba does not support type hints for njit: https://github.com/python/mypy/issues/16149
from numba import njit # type: ignore[attr-defined]
from numba.core import types
from numba.typed import Dict, List
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.jsonl"}
logger = logging.get_logger(__name__)
INVALID_SCORE = -20000000
UNKNOWN_SCORE = -10000000
TABLE_PIECE_LENGTH = 0
TABLE_TOKEN_ID = 1
TABLE_SCORE = 2
TABLE_PIECE_ID = 3
PATH_TOKEN_LENGTH = 0
PATH_TOKEN_ID = 1
PATH_NUM_TOKENS = 2
class AhoCorasick:
def __init__(self) -> None:
# List of tokens in the vocabulary.
self._tokens: list[str]
# A mapping from a byte code point to a token ID, used for byte fallback.
self._bytes: np.ndarray
# A mapping from a suffix's piece code to a suffix ID.
#
# Typically, the Aho-Corasick algorithm builds a Trie and adds suffix links between nodes
# of the Trie. In this implementation, a suffix ID corresponds to a node in the trie, and
# a piece code to an edge (in other words, a pair of a node and the next character).
#
# A piece code is a 64-bit integer:
# - The upper 32 bits store the Unicode code point of the first character.
# - The lower 32 bits store the suffix ID of the remaining suffix.
#
# A suffix ID is an integer indicating the starting position in the _table.
self._to_suffix_id: Dict[types.int64, types.int32]
# Flattened table representing the Trie structure for the Aho-Corasick algorithm.
# It stores information including scores for each piece (prefix) within each suffix.
# It is flattened for memory efficiency and performance. Suffixes are stored in
# lexicographical order of their reversed strings, which improves memory access locality
# when exploring new characters starting from the string's end. Pieces within a suffix are
# stored in the decreasing order of their lengths.
#
# Each piece (a prefix fo the suffix) contains four pieces of information:
# - TABLE_PIECE_LENGTH: Length of the piece.
# - TABLE_TOKEN_ID: Token ID (or -1 if the piece is not a valid token).
# - TABLE_SCORE: Score (or INVALID_SCORE if the piece is not a valid token).
# - TABLE_PIECE_ID: Piece ID of the suffix.
#
# Each suffix also includes a sentinel row with a length of 1, a score of UNKNOWN_SCORE,
# and a token ID of -1. Sentinel rows are identified by the score being UNKNOWN_SCORE.
self._table: np.ndarray
def build(self, vocab: list[Any]) -> None:
self._bytes = np.zeros(256, dtype=np.int32)
self._to_suffix_id = Dict.empty(key_type=types.int64, value_type=types.int32)
# Build suffix_to_score and token_to_token_id.
# The suffix_to_score dictionary maps a suffix to its score. It also includes all suffixes
# of the token for the Trie structure for the Aho-Corasick algorithm. If a suffix is not a
# valid token, its score is set to math.nan.
# The token_to_token_id dictionary maps a token to its token ID.
suffix_to_score: dict[str, float] = {}
token_to_token_id: dict[str, int] = {}
self._tokens = []
for token_id, row in enumerate(vocab):
assert isinstance(row[0], str), row
assert isinstance(row[1], (int, float)), row
token = str(row[0])
self._tokens.append(token)
token_to_token_id[token] = token_id
# Special handling for byte tokens.
if len(row) > 2 and row[2] == "BYTE":
assert len(token) == 6 and token.startswith("<0x") and token.endswith(">"), row[0]
self._bytes[int(row[0][3:5], 16)] = token_id
continue
suffix_to_score[token] = float(row[1])
# Ensure that all suffixes are included in suffix_to_score.
for i in range(1, len(token)):
suffix_to_score[token[i:]] = suffix_to_score.get(token[i:], math.nan)
# Ensure all byte tokens are set.
for i in range(256):
assert self._bytes[i] != 0, f"Byte token for <0x{i:02X}> is not set."
# List suffixes in lexicographical order of their reversed strings.
suffixes = list(suffix_to_score.keys())
suffixes.append("")
suffixes.sort(key=lambda x: x[::-1])
# Build suffix_to_id, which is a mapping from a suffix to a suffix ID, and _to_suffix_id,
# which is a mapping from a piece code to a suffix ID.
suffix_to_id: dict[str, int] = {}
num_pieces = 0
for s in suffixes:
suffix_to_id[s] = num_pieces
if s != "":
self._to_suffix_id[ord(s[0]) << 32 | suffix_to_id[s[1:]]] = np.int32(num_pieces)
num_pieces += 1 + sum(s[:i] in suffix_to_score for i in range(1, len(s) + 1))
assert suffix_to_id[""] == 0, suffix_to_id[""]
# Build _table, which is a flattened table representing the Trie structure for the Aho-Corasick.
self._table = np.zeros((num_pieces, 4), dtype=np.int32)
i = 0
for suffix in suffixes:
# Add all prefixes of the suffix to the table.
for piece_length in range(len(suffix), 0, -1):
piece = suffix[:piece_length]
score = suffix_to_score.get(piece, None)
if score is None:
continue
self._table[i, TABLE_PIECE_LENGTH] = piece_length
self._table[i, TABLE_TOKEN_ID] = token_to_token_id.get(piece, -1)
self._table[i, TABLE_SCORE] = round(score * 1e4) if math.isfinite(score) else INVALID_SCORE
self._table[i, TABLE_PIECE_ID] = suffix_to_id[piece]
i += 1
# Add a sentinel row.
self._table[i, TABLE_PIECE_LENGTH] = 1
self._table[i, TABLE_TOKEN_ID] = -1
self._table[i, TABLE_SCORE] = UNKNOWN_SCORE
i += 1
assert i == num_pieces, (i, num_pieces)
@staticmethod
@njit
def _encode(
to_suffix_id: Dict[types.int64, types.int32],
table: np.ndarray,
bytes: np.ndarray,
data: np.ndarray,
) -> np.ndarray:
# Initialize scores array with a high value and set the score at the end to 0.
# This array keeps track of the minimum cost (best score) to encode from each position to the end.
scores = np.full((len(data) + 1,), 2**60, dtype=np.int64)
scores[-1] = 0
# Path array to store the best path information.
# The path array keeps track of token length, token ID, and number of tokens needed to encode.
path = np.zeros((len(data) + 1, 3), dtype=np.int32)
# Initialize suffix_id to 0, which represents the root of the Trie.
suffix_id = 0
# Process the input data from the end to the beginning.
for i in range(len(data) - 1, -1, -1):
c = data[i]
# Find the next suffix ID by iterating the suffix IDs of prefixes of the current suffix.
# NOTE: If no suffix ID is found, suffix_id will be set to 0.
for p in range(suffix_id, len(table)):
suffix_id = to_suffix_id.get(c << 32 | table[p, TABLE_PIECE_ID], np.int32(0))
# If a next suffix ID is found or a sentinel row is reached, break the loop.
if suffix_id > 0 or table[p, TABLE_SCORE] == UNKNOWN_SCORE:
break
# Update the best path to the current position. If multiple paths have the same score,
# this chooses the longest prefix as the best path (table is sorted in the decreasing
# order of piece length).
for p in range(suffix_id, len(table)):
score = table[p, TABLE_SCORE]
if score > INVALID_SCORE:
piece_length = table[p, TABLE_PIECE_LENGTH]
s = scores[i + piece_length] - score
if s < scores[i]:
scores[i] = s
path[i, PATH_TOKEN_LENGTH] = piece_length
path[i, PATH_TOKEN_ID] = table[p, TABLE_TOKEN_ID]
path[i, PATH_NUM_TOKENS] = path[i + piece_length, PATH_NUM_TOKENS] + 1
if score == UNKNOWN_SCORE:
# Add number of bytes to represent `c` in UTF-8 (minus 1; 1 is already
# added above).
path[i, PATH_NUM_TOKENS] += (c >= 0x80) + (c >= 0x800) + (c >= 0x10000)
# If it reaches a sentinel row, break the loop.
if score == UNKNOWN_SCORE:
break
# Decode the best path from the beginning to get the token IDs.
pos = 0
token_ids = np.zeros(path[0, PATH_NUM_TOKENS], dtype=np.int32)
token_pos = 0
while pos < len(data):
if path[pos, PATH_TOKEN_ID] >= 0:
token_ids[token_pos] = path[pos, PATH_TOKEN_ID]
token_pos += 1
else:
# Fall back to byte tokens.
c = data[pos]
s = 1 + (c >= 0x80) + (c >= 0x800) + (c >= 0x10000)
# Add byte tokens representing UTF-8 bytes.
for i in range(s):
b = c if s == 1 else (0xF00 >> s) & 0xFF if i == 0 else 0x80
token_ids[token_pos] = bytes[b | ((c >> (s - i - 1) * 6) & 0x3F)]
token_pos += 1
# Ensure that pos should increase by at least 1.
assert path[pos, PATH_TOKEN_LENGTH] > 0, (pos, path[pos])
pos += path[pos, PATH_TOKEN_LENGTH]
return token_ids
def encode(self, data: str) -> np.ndarray:
"""Encodes a string into a sequence of token IDs."""
return np.asarray(
self._encode(
self._to_suffix_id,
self._table,
self._bytes,
# Convert a string into a numpy array of Unicode code points.
# NOTE: This skips UTF-32 BOM.
np.frombuffer(data.encode("utf-32"), dtype=np.int32)[1:],
)
)
def encode_as_tokens(self, data: str) -> list[str]:
"""Encodes a string into a sequence of tokens."""
return [self._tokens[token_id] for token_id in self.encode(data)]
class PlamoTokenizer(PreTrainedTokenizer): # type: ignore
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
_save_files = [
"special_tokens_map.json",
"tokenization_plamo.py",
"tokenizer.jsonl",
"tokenizer_config.json",
]
def __init__(
self,
vocab_file: str,
unk_token: str = "<|plamo:unk|>",
bos_token: str = "<|plamo:bos|>",
eos_token: str = "<|plamo:eos|>",
pad_token: str = "<|plamo:pad|>",
cls_token: Optional[str] = None,
sep_token: Optional[str] = None,
mask_token: Optional[str] = None,
clean_up_tokenization_spaces: bool = False,
**kwargs: Any,
) -> None:
"""Tokenizer for PLaMo.
Args:
vocab_file (str): Vocabrary file path.
unk_token (str): Unknown token.
bos_token (str): Beginning of sentence token.
eos_token (str): End of sentence token.
pad_token (str): Padding token.
cls_token (str):
Classification token, to extract a summary of an input sequence leveraging self-attention along the
full depth of the model.
sep_token (str): Separation token, to separate context and query in an input sequence.
mask_token (str): Mask token, to use when training a model with masked-language modeling.
clean_up_tokenization_spaces (bool): Whether or not to clean up the tokenization spaces.
num_threads (int):
Number of threads. This value will be ignored if one of `PLAMO_TOKENIZER_NUM_THREADS` or
`RAYON_NUM_THREADS` is set as an environment variable.
"""
if "add_bos_token" not in kwargs:
kwargs["add_bos_token"] = False
if "add_eos_token" not in kwargs:
kwargs["add_eos_token"] = False
self.data: list[Any] = [json.loads(line) for line in open(vocab_file, "r", encoding="utf-8")]
self.vocab: dict[str, int] = {v[0]: i for i, v in enumerate(self.data)}
self.aho_corasick = AhoCorasick()
self.aho_corasick.build(self.data)
self.vocab_file = vocab_file
self.add_bos_token = kwargs["add_bos_token"]
self.add_eos_token = kwargs["add_eos_token"]
super().__init__(
vocab_file=vocab_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
cls_token=cls_token,
sep_token=sep_token,
mask_token=mask_token,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
# the functions below are copied from hf transformers LlamaTokenizer's implementation to fix the behaviour of the tokenizer
# https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/models/llama/tokenization_llama.py
def __getstate__(self) -> dict[str, Any]:
state = self.__dict__.copy()
state["aho_corasick"] = None
return state
def __setstate__(self, d: dict[str, Any]) -> None:
self.__dict__ = d
self.aho_corasick = AhoCorasick()
self.aho_corasick.build(self.data)
@property
def vocab_size(self) -> Any:
"""Returns vocab size"""
return len(self.data)
def token_to_score(self, token: str) -> Optional[float]:
"""Returns score of the token"""
token_id = self.vocab.get(token, None)
return None if token_id is None else self.data[token_id][1]
def get_vocab(self) -> dict[str, int]:
"""Returns vocab as a dict"""
vocab = self.vocab.copy()
vocab.update(self.added_tokens_encoder)
return vocab
def convert_tokens_to_string(self, tokens: List[str]) -> str:
"""Converts a sequence of tokens (string) in a single string."""
return b"".join(
[bytes([int(t[3:5], 16)]) if t.startswith("<0x") else t.encode("utf-8") for t in tokens]
).decode("utf-8", errors="replace")
def _tokenize(self, text: str) -> Any:
"""Returns a tokenized string."""
return self.aho_corasick.encode_as_tokens(text)
def _convert_token_to_id(self, token: str) -> Any:
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, 0)
def _convert_id_to_token(self, index: int) -> Any:
"""Converts an index (integer) in a token (str) using the vocab."""
return self.data[index][0]
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return ("",)
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "w") as f:
for token in self.data:
print(json.dumps(token, ensure_ascii=False), file=f)
return (out_vocab_file,)
|