File size: 16,888 Bytes
65176a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import json
import math
import os
from shutil import copyfile
from typing import Any, Optional, Tuple

import numpy as np

# NOTE: numba does not support type hints for njit: https://github.com/python/mypy/issues/16149
from numba import njit  # type: ignore[attr-defined]
from numba.core import types
from numba.typed import Dict, List
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging

VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.jsonl"}
logger = logging.get_logger(__name__)

INVALID_SCORE = -20000000
UNKNOWN_SCORE = -10000000

TABLE_PIECE_LENGTH = 0
TABLE_TOKEN_ID = 1
TABLE_SCORE = 2
TABLE_PIECE_ID = 3

PATH_TOKEN_LENGTH = 0
PATH_TOKEN_ID = 1
PATH_NUM_TOKENS = 2


class AhoCorasick:
    def __init__(self) -> None:
        # List of tokens in the vocabulary.
        self._tokens: list[str]

        # A mapping from a byte code point to a token ID, used for byte fallback.
        self._bytes: np.ndarray

        # A mapping from a suffix's piece code to a suffix ID.
        #
        # Typically, the Aho-Corasick algorithm builds a Trie and adds suffix links between nodes
        # of the Trie. In this implementation, a suffix ID corresponds to a node in the trie, and
        # a piece code to an edge (in other words, a pair of a node and the next character).
        #
        # A piece code is a 64-bit integer:
        # - The upper 32 bits store the Unicode code point of the first character.
        # - The lower 32 bits store the suffix ID of the remaining suffix.
        #
        # A suffix ID is an integer indicating the starting position in the _table.
        self._to_suffix_id: Dict[types.int64, types.int32]

        # Flattened table representing the Trie structure for the Aho-Corasick algorithm.
        # It stores information including scores for each piece (prefix) within each suffix.
        # It is flattened for memory efficiency and performance. Suffixes are stored in
        # lexicographical order of their reversed strings, which improves memory access locality
        # when exploring new characters starting from the string's end. Pieces within a suffix are
        # stored in the decreasing order of their lengths.
        #
        # Each piece (a prefix fo the suffix) contains four pieces of information:
        # - TABLE_PIECE_LENGTH: Length of the piece.
        # - TABLE_TOKEN_ID: Token ID (or -1 if the piece is not a valid token).
        # - TABLE_SCORE: Score (or INVALID_SCORE if the piece is not a valid token).
        # - TABLE_PIECE_ID: Piece ID of the suffix.
        #
        # Each suffix also includes a sentinel row with a length of 1, a score of UNKNOWN_SCORE,
        # and a token ID of -1. Sentinel rows are identified by the score being UNKNOWN_SCORE.
        self._table: np.ndarray

    def build(self, vocab: list[Any]) -> None:
        self._bytes = np.zeros(256, dtype=np.int32)
        self._to_suffix_id = Dict.empty(key_type=types.int64, value_type=types.int32)

        # Build suffix_to_score and token_to_token_id.
        # The suffix_to_score dictionary maps a suffix to its score. It also includes all suffixes
        # of the token for the Trie structure for the Aho-Corasick algorithm. If a suffix is not a
        # valid token, its score is set to math.nan.
        # The token_to_token_id dictionary maps a token to its token ID.
        suffix_to_score: dict[str, float] = {}
        token_to_token_id: dict[str, int] = {}
        self._tokens = []
        for token_id, row in enumerate(vocab):
            assert isinstance(row[0], str), row
            assert isinstance(row[1], (int, float)), row

            token = str(row[0])
            self._tokens.append(token)
            token_to_token_id[token] = token_id

            # Special handling for byte tokens.
            if len(row) > 2 and row[2] == "BYTE":
                assert len(token) == 6 and token.startswith("<0x") and token.endswith(">"), row[0]
                self._bytes[int(row[0][3:5], 16)] = token_id
                continue

            suffix_to_score[token] = float(row[1])
            # Ensure that all suffixes are included in suffix_to_score.
            for i in range(1, len(token)):
                suffix_to_score[token[i:]] = suffix_to_score.get(token[i:], math.nan)

        # Ensure all byte tokens are set.
        for i in range(256):
            assert self._bytes[i] != 0, f"Byte token for <0x{i:02X}> is not set."

        # List suffixes in lexicographical order of their reversed strings.
        suffixes = list(suffix_to_score.keys())
        suffixes.append("")
        suffixes.sort(key=lambda x: x[::-1])

        # Build suffix_to_id, which is a mapping from a suffix to a suffix ID, and _to_suffix_id,
        # which is a mapping from a piece code to a suffix ID.
        suffix_to_id: dict[str, int] = {}
        num_pieces = 0
        for s in suffixes:
            suffix_to_id[s] = num_pieces
            if s != "":
                self._to_suffix_id[ord(s[0]) << 32 | suffix_to_id[s[1:]]] = np.int32(num_pieces)
            num_pieces += 1 + sum(s[:i] in suffix_to_score for i in range(1, len(s) + 1))
        assert suffix_to_id[""] == 0, suffix_to_id[""]

        # Build _table, which is a flattened table representing the Trie structure for the Aho-Corasick.
        self._table = np.zeros((num_pieces, 4), dtype=np.int32)
        i = 0
        for suffix in suffixes:
            # Add all prefixes of the suffix to the table.
            for piece_length in range(len(suffix), 0, -1):
                piece = suffix[:piece_length]
                score = suffix_to_score.get(piece, None)
                if score is None:
                    continue
                self._table[i, TABLE_PIECE_LENGTH] = piece_length
                self._table[i, TABLE_TOKEN_ID] = token_to_token_id.get(piece, -1)
                self._table[i, TABLE_SCORE] = round(score * 1e4) if math.isfinite(score) else INVALID_SCORE
                self._table[i, TABLE_PIECE_ID] = suffix_to_id[piece]
                i += 1

            # Add a sentinel row.
            self._table[i, TABLE_PIECE_LENGTH] = 1
            self._table[i, TABLE_TOKEN_ID] = -1
            self._table[i, TABLE_SCORE] = UNKNOWN_SCORE
            i += 1
        assert i == num_pieces, (i, num_pieces)

    @staticmethod
    @njit
    def _encode(
        to_suffix_id: Dict[types.int64, types.int32],
        table: np.ndarray,
        bytes: np.ndarray,
        data: np.ndarray,
    ) -> np.ndarray:
        # Initialize scores array with a high value and set the score at the end to 0.
        # This array keeps track of the minimum cost (best score) to encode from each position to the end.
        scores = np.full((len(data) + 1,), 2**60, dtype=np.int64)
        scores[-1] = 0

        # Path array to store the best path information.
        # The path array keeps track of token length, token ID, and number of tokens needed to encode.
        path = np.zeros((len(data) + 1, 3), dtype=np.int32)

        # Initialize suffix_id to 0, which represents the root of the Trie.
        suffix_id = 0

        # Process the input data from the end to the beginning.
        for i in range(len(data) - 1, -1, -1):
            c = data[i]

            # Find the next suffix ID by iterating the suffix IDs of prefixes of the current suffix.
            # NOTE: If no suffix ID is found, suffix_id will be set to 0.
            for p in range(suffix_id, len(table)):
                suffix_id = to_suffix_id.get(c << 32 | table[p, TABLE_PIECE_ID], np.int32(0))
                # If a next suffix ID is found or a sentinel row is reached, break the loop.
                if suffix_id > 0 or table[p, TABLE_SCORE] == UNKNOWN_SCORE:
                    break

            # Update the best path to the current position. If multiple paths have the same score,
            # this chooses the longest prefix as the best path (table is sorted in the decreasing
            # order of piece length).
            for p in range(suffix_id, len(table)):
                score = table[p, TABLE_SCORE]
                if score > INVALID_SCORE:
                    piece_length = table[p, TABLE_PIECE_LENGTH]
                    s = scores[i + piece_length] - score
                    if s < scores[i]:
                        scores[i] = s
                        path[i, PATH_TOKEN_LENGTH] = piece_length
                        path[i, PATH_TOKEN_ID] = table[p, TABLE_TOKEN_ID]
                        path[i, PATH_NUM_TOKENS] = path[i + piece_length, PATH_NUM_TOKENS] + 1
                        if score == UNKNOWN_SCORE:
                            # Add number of bytes to represent `c` in UTF-8 (minus 1; 1 is already
                            # added above).
                            path[i, PATH_NUM_TOKENS] += (c >= 0x80) + (c >= 0x800) + (c >= 0x10000)

                # If it reaches a sentinel row, break the loop.
                if score == UNKNOWN_SCORE:
                    break

        # Decode the best path from the beginning to get the token IDs.
        pos = 0
        token_ids = np.zeros(path[0, PATH_NUM_TOKENS], dtype=np.int32)
        token_pos = 0
        while pos < len(data):
            if path[pos, PATH_TOKEN_ID] >= 0:
                token_ids[token_pos] = path[pos, PATH_TOKEN_ID]
                token_pos += 1
            else:
                # Fall back to byte tokens.
                c = data[pos]
                s = 1 + (c >= 0x80) + (c >= 0x800) + (c >= 0x10000)
                # Add byte tokens representing UTF-8 bytes.
                for i in range(s):
                    b = c if s == 1 else (0xF00 >> s) & 0xFF if i == 0 else 0x80
                    token_ids[token_pos] = bytes[b | ((c >> (s - i - 1) * 6) & 0x3F)]
                    token_pos += 1

            # Ensure that pos should increase by at least 1.
            assert path[pos, PATH_TOKEN_LENGTH] > 0, (pos, path[pos])
            pos += path[pos, PATH_TOKEN_LENGTH]

        return token_ids

    def encode(self, data: str) -> np.ndarray:
        """Encodes a string into a sequence of token IDs."""
        return np.asarray(
            self._encode(
                self._to_suffix_id,
                self._table,
                self._bytes,
                # Convert a string into a numpy array of Unicode code points.
                # NOTE: This skips UTF-32 BOM.
                np.frombuffer(data.encode("utf-32"), dtype=np.int32)[1:],
            )
        )

    def encode_as_tokens(self, data: str) -> list[str]:
        """Encodes a string into a sequence of tokens."""
        return [self._tokens[token_id] for token_id in self.encode(data)]


class PlamoTokenizer(PreTrainedTokenizer):  # type: ignore
    vocab_files_names = VOCAB_FILES_NAMES
    model_input_names = ["input_ids", "attention_mask"]

    _save_files = [
        "special_tokens_map.json",
        "tokenization_plamo.py",
        "tokenizer.jsonl",
        "tokenizer_config.json",
    ]

    def __init__(
        self,
        vocab_file: str,
        unk_token: str = "<|plamo:unk|>",
        bos_token: str = "<|plamo:bos|>",
        eos_token: str = "<|plamo:eos|>",
        pad_token: str = "<|plamo:pad|>",
        cls_token: Optional[str] = None,
        sep_token: Optional[str] = None,
        mask_token: Optional[str] = None,
        clean_up_tokenization_spaces: bool = False,
        **kwargs: Any,
    ) -> None:
        """Tokenizer for PLaMo.

        Args:
            vocab_file (str): Vocabrary file path.
            unk_token (str): Unknown token.
            bos_token (str): Beginning of sentence token.
            eos_token (str): End of sentence token.
            pad_token (str): Padding token.
            cls_token (str):
                Classification token, to extract a summary of an input sequence leveraging self-attention along the
                full depth of the model.
            sep_token (str): Separation token, to separate context and query in an input sequence.
            mask_token (str): Mask token, to use when training a model with masked-language modeling.
            clean_up_tokenization_spaces (bool): Whether or not to clean up the tokenization spaces.
            num_threads (int):
                Number of threads. This value will be ignored if one of `PLAMO_TOKENIZER_NUM_THREADS` or
                `RAYON_NUM_THREADS` is set as an environment variable.
        """
        if "add_bos_token" not in kwargs:
            kwargs["add_bos_token"] = False
        if "add_eos_token" not in kwargs:
            kwargs["add_eos_token"] = False
        self.data: list[Any] = [json.loads(line) for line in open(vocab_file, "r", encoding="utf-8")]
        self.vocab: dict[str, int] = {v[0]: i for i, v in enumerate(self.data)}
        self.aho_corasick = AhoCorasick()
        self.aho_corasick.build(self.data)
        self.vocab_file = vocab_file
        self.add_bos_token = kwargs["add_bos_token"]
        self.add_eos_token = kwargs["add_eos_token"]

        super().__init__(
            vocab_file=vocab_file,
            unk_token=unk_token,
            bos_token=bos_token,
            eos_token=eos_token,
            pad_token=pad_token,
            cls_token=cls_token,
            sep_token=sep_token,
            mask_token=mask_token,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            **kwargs,
        )

    # the functions below are copied from hf transformers LlamaTokenizer's implementation to fix the behaviour of the tokenizer
    # https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/models/llama/tokenization_llama.py

    def __getstate__(self) -> dict[str, Any]:
        state = self.__dict__.copy()
        state["aho_corasick"] = None
        return state

    def __setstate__(self, d: dict[str, Any]) -> None:
        self.__dict__ = d
        self.aho_corasick = AhoCorasick()
        self.aho_corasick.build(self.data)

    @property
    def vocab_size(self) -> Any:
        """Returns vocab size"""
        return len(self.data)

    def token_to_score(self, token: str) -> Optional[float]:
        """Returns score of the token"""
        token_id = self.vocab.get(token, None)
        return None if token_id is None else self.data[token_id][1]

    def get_vocab(self) -> dict[str, int]:
        """Returns vocab as a dict"""
        vocab = self.vocab.copy()
        vocab.update(self.added_tokens_encoder)
        return vocab

    def convert_tokens_to_string(self, tokens: List[str]) -> str:
        """Converts a sequence of tokens (string) in a single string."""
        return b"".join(
            [bytes([int(t[3:5], 16)]) if t.startswith("<0x") else t.encode("utf-8") for t in tokens]
        ).decode("utf-8", errors="replace")

    def _tokenize(self, text: str) -> Any:
        """Returns a tokenized string."""
        return self.aho_corasick.encode_as_tokens(text)

    def _convert_token_to_id(self, token: str) -> Any:
        """Converts a token (str) in an id using the vocab."""
        return self.vocab.get(token, 0)

    def _convert_id_to_token(self, index: int) -> Any:
        """Converts an index (integer) in a token (str) using the vocab."""
        return self.data[index][0]

    def build_inputs_with_special_tokens(
        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
    ) -> List[int]:
        bos_token_id = [self.bos_token_id] if self.add_bos_token else []
        eos_token_id = [self.eos_token_id] if self.add_eos_token else []

        output = bos_token_id + token_ids_0 + eos_token_id

        if token_ids_1 is not None:
            output = output + bos_token_id + token_ids_1 + eos_token_id

        return output

    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        """
        Save the vocabulary and special tokens file to a directory.

        Args:
            save_directory (`str`):
                The directory in which to save the vocabulary.

        Returns:
            `Tuple(str)`: Paths to the files saved.
        """
        if not os.path.isdir(save_directory):
            logger.error(f"Vocabulary path ({save_directory}) should be a directory")
            return ("",)
        out_vocab_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
        )

        if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
            copyfile(self.vocab_file, out_vocab_file)
        elif not os.path.isfile(self.vocab_file):
            with open(out_vocab_file, "w") as f:
                for token in self.data:
                    print(json.dumps(token, ensure_ascii=False), file=f)

        return (out_vocab_file,)