layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7033
  • Answer: {'precision': 0.7135016465422612, 'recall': 0.8034610630407911, 'f1': 0.7558139534883722, 'number': 809}
  • Header: {'precision': 0.34959349593495936, 'recall': 0.36134453781512604, 'f1': 0.35537190082644626, 'number': 119}
  • Question: {'precision': 0.7895204262877442, 'recall': 0.8347417840375587, 'f1': 0.8115015974440895, 'number': 1065}
  • Overall Precision: 0.7324
  • Overall Recall: 0.7938
  • Overall F1: 0.7619
  • Overall Accuracy: 0.8096

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7852 1.0 10 1.6133 {'precision': 0.0075, 'recall': 0.003708281829419036, 'f1': 0.004962779156327543, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.27348066298342544, 'recall': 0.09295774647887324, 'f1': 0.13875262789067977, 'number': 1065} 0.1339 0.0512 0.0740 0.3219
1.4748 2.0 20 1.2897 {'precision': 0.13947696139476962, 'recall': 0.138442521631644, 'f1': 0.13895781637717122, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4375, 'recall': 0.5126760563380282, 'f1': 0.4721141374837873, 'number': 1065} 0.3208 0.3302 0.3254 0.5949
1.1297 3.0 30 0.9650 {'precision': 0.4776931447225245, 'recall': 0.5426452410383189, 'f1': 0.5081018518518519, 'number': 809} {'precision': 0.14285714285714285, 'recall': 0.025210084033613446, 'f1': 0.04285714285714286, 'number': 119} {'precision': 0.5609561752988048, 'recall': 0.6610328638497652, 'f1': 0.606896551724138, 'number': 1065} 0.5221 0.5750 0.5473 0.7046
0.8686 4.0 40 0.7908 {'precision': 0.6090534979423868, 'recall': 0.7317676143386898, 'f1': 0.664795058955643, 'number': 809} {'precision': 0.17543859649122806, 'recall': 0.08403361344537816, 'f1': 0.11363636363636363, 'number': 119} {'precision': 0.66431718061674, 'recall': 0.707981220657277, 'f1': 0.6854545454545454, 'number': 1065} 0.6266 0.6804 0.6524 0.7606
0.688 5.0 50 0.7202 {'precision': 0.6440677966101694, 'recall': 0.7515451174289246, 'f1': 0.6936679977181973, 'number': 809} {'precision': 0.345679012345679, 'recall': 0.23529411764705882, 'f1': 0.27999999999999997, 'number': 119} {'precision': 0.6864197530864198, 'recall': 0.7830985915492957, 'f1': 0.7315789473684212, 'number': 1065} 0.6562 0.7376 0.6945 0.7799
0.5806 6.0 60 0.6899 {'precision': 0.6547368421052632, 'recall': 0.7688504326328801, 'f1': 0.7072200113700967, 'number': 809} {'precision': 0.3068181818181818, 'recall': 0.226890756302521, 'f1': 0.2608695652173913, 'number': 119} {'precision': 0.723441615452151, 'recall': 0.7737089201877935, 'f1': 0.7477313974591652, 'number': 1065} 0.6766 0.7391 0.7065 0.7841
0.4975 7.0 70 0.6633 {'precision': 0.6722689075630253, 'recall': 0.7911001236093943, 'f1': 0.7268597387847815, 'number': 809} {'precision': 0.30434782608695654, 'recall': 0.23529411764705882, 'f1': 0.2654028436018957, 'number': 119} {'precision': 0.7429577464788732, 'recall': 0.7924882629107981, 'f1': 0.7669241253975465, 'number': 1065} 0.6936 0.7587 0.7247 0.7969
0.4425 8.0 80 0.6850 {'precision': 0.6790123456790124, 'recall': 0.8158220024721878, 'f1': 0.7411566535654126, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.29411764705882354, 'f1': 0.3125, 'number': 119} {'precision': 0.7445319335083115, 'recall': 0.7990610328638498, 'f1': 0.7708333333333334, 'number': 1065} 0.6964 0.7757 0.7339 0.7933
0.3867 9.0 90 0.6700 {'precision': 0.7067254685777288, 'recall': 0.792336217552534, 'f1': 0.7470862470862472, 'number': 809} {'precision': 0.3181818181818182, 'recall': 0.29411764705882354, 'f1': 0.3056768558951965, 'number': 119} {'precision': 0.7567099567099567, 'recall': 0.8206572769953052, 'f1': 0.7873873873873873, 'number': 1065} 0.7136 0.7777 0.7443 0.8031
0.3746 10.0 100 0.6724 {'precision': 0.7029702970297029, 'recall': 0.7898640296662547, 'f1': 0.7438882421420255, 'number': 809} {'precision': 0.3425925925925926, 'recall': 0.31092436974789917, 'f1': 0.3259911894273128, 'number': 119} {'precision': 0.7665505226480837, 'recall': 0.8262910798122066, 'f1': 0.7953004970628107, 'number': 1065} 0.7187 0.7807 0.7484 0.8095
0.3198 11.0 110 0.6931 {'precision': 0.7155266015200868, 'recall': 0.8145859085290482, 'f1': 0.761849710982659, 'number': 809} {'precision': 0.30952380952380953, 'recall': 0.3277310924369748, 'f1': 0.31836734693877555, 'number': 119} {'precision': 0.7760279965004374, 'recall': 0.8328638497652582, 'f1': 0.8034420289855072, 'number': 1065} 0.7237 0.7953 0.7578 0.8042
0.3041 12.0 120 0.6943 {'precision': 0.7182628062360802, 'recall': 0.7972805933250927, 'f1': 0.7557117750439368, 'number': 809} {'precision': 0.33884297520661155, 'recall': 0.3445378151260504, 'f1': 0.3416666666666667, 'number': 119} {'precision': 0.780053428317008, 'recall': 0.8225352112676056, 'f1': 0.8007312614259597, 'number': 1065} 0.7292 0.7837 0.7555 0.8068
0.2828 13.0 130 0.7021 {'precision': 0.7139737991266376, 'recall': 0.8084054388133498, 'f1': 0.7582608695652174, 'number': 809} {'precision': 0.358974358974359, 'recall': 0.35294117647058826, 'f1': 0.35593220338983056, 'number': 119} {'precision': 0.8, 'recall': 0.8413145539906103, 'f1': 0.820137299771167, 'number': 1065} 0.7394 0.7988 0.7680 0.8069
0.2647 14.0 140 0.7052 {'precision': 0.7184035476718403, 'recall': 0.8009888751545118, 'f1': 0.7574517825832847, 'number': 809} {'precision': 0.3282442748091603, 'recall': 0.36134453781512604, 'f1': 0.344, 'number': 119} {'precision': 0.7872340425531915, 'recall': 0.8338028169014085, 'f1': 0.8098495212038304, 'number': 1065} 0.7307 0.7923 0.7602 0.8076
0.265 15.0 150 0.7033 {'precision': 0.7135016465422612, 'recall': 0.8034610630407911, 'f1': 0.7558139534883722, 'number': 809} {'precision': 0.34959349593495936, 'recall': 0.36134453781512604, 'f1': 0.35537190082644626, 'number': 119} {'precision': 0.7895204262877442, 'recall': 0.8347417840375587, 'f1': 0.8115015974440895, 'number': 1065} 0.7324 0.7938 0.7619 0.8096

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
162
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for perceptron-soup/layoutlm-funsd

Finetuned
(151)
this model