longformer-schema-linking
This model is a fine-tuned version of allenai/longformer-base-4096 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1273
- Accuracy: 0.9652
- F1: 0.9354
- Precision: 0.9325
- Recall: 0.9383
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.4973 | 0.2251 | 400 | 0.2696 | 0.9303 | 0.8552 | 0.9688 | 0.7654 |
0.2865 | 0.4502 | 800 | 0.1839 | 0.9502 | 0.9020 | 0.9583 | 0.8519 |
0.2234 | 0.6753 | 1200 | 0.1078 | 0.9635 | 0.9337 | 0.9118 | 0.9568 |
0.1829 | 0.9004 | 1600 | 0.1148 | 0.9635 | 0.9325 | 0.9268 | 0.9383 |
0.1506 | 1.1255 | 2000 | 0.1339 | 0.9701 | 0.9448 | 0.9390 | 0.9506 |
0.1315 | 1.3506 | 2400 | 0.1094 | 0.9652 | 0.9362 | 0.9222 | 0.9506 |
0.1208 | 1.5757 | 2800 | 0.1312 | 0.9635 | 0.9317 | 0.9375 | 0.9259 |
0.1071 | 1.8008 | 3200 | 0.1273 | 0.9652 | 0.9354 | 0.9325 | 0.9383 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 43
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for paulo037/longformer-schema-linking
Base model
allenai/longformer-base-4096