layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6795
  • Answer: {'precision': 0.7247807017543859, 'recall': 0.8170580964153276, 'f1': 0.768158047646717, 'number': 809}
  • Header: {'precision': 0.3208955223880597, 'recall': 0.36134453781512604, 'f1': 0.33992094861660077, 'number': 119}
  • Question: {'precision': 0.7793721973094171, 'recall': 0.815962441314554, 'f1': 0.7972477064220184, 'number': 1065}
  • Overall Precision: 0.7279
  • Overall Recall: 0.7893
  • Overall F1: 0.7573
  • Overall Accuracy: 0.8097

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7157 1.0 10 1.4996 {'precision': 0.07431693989071038, 'recall': 0.08405438813349815, 'f1': 0.0788863109048724, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.22849213691026826, 'recall': 0.231924882629108, 'f1': 0.23019571295433364, 'number': 1065} 0.1578 0.1581 0.1579 0.4464
1.3388 2.0 20 1.1680 {'precision': 0.2980891719745223, 'recall': 0.2892459826946848, 'f1': 0.2936010037641154, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.49192245557350567, 'recall': 0.571830985915493, 'f1': 0.5288753799392097, 'number': 1065} 0.4167 0.4230 0.4198 0.6170
1.0157 3.0 30 0.8917 {'precision': 0.5579302587176603, 'recall': 0.6131025957972805, 'f1': 0.5842167255594817, 'number': 809} {'precision': 0.13513513513513514, 'recall': 0.04201680672268908, 'f1': 0.06410256410256411, 'number': 119} {'precision': 0.5931528662420382, 'recall': 0.6995305164319249, 'f1': 0.6419646704006894, 'number': 1065} 0.5710 0.6252 0.5969 0.7325
0.7726 4.0 40 0.7448 {'precision': 0.6359875904860393, 'recall': 0.7601977750309024, 'f1': 0.6925675675675675, 'number': 809} {'precision': 0.29850746268656714, 'recall': 0.16806722689075632, 'f1': 0.21505376344086022, 'number': 119} {'precision': 0.691696113074205, 'recall': 0.7352112676056338, 'f1': 0.7127901684114702, 'number': 1065} 0.6547 0.7115 0.6819 0.7725
0.6355 5.0 50 0.6844 {'precision': 0.6714129244249726, 'recall': 0.757725587144623, 'f1': 0.7119628339140535, 'number': 809} {'precision': 0.3170731707317073, 'recall': 0.2184873949579832, 'f1': 0.25870646766169153, 'number': 119} {'precision': 0.705, 'recall': 0.7943661971830986, 'f1': 0.7470198675496689, 'number': 1065} 0.6765 0.7451 0.7092 0.7944
0.5353 6.0 60 0.6699 {'precision': 0.6676860346585117, 'recall': 0.8096415327564895, 'f1': 0.7318435754189945, 'number': 809} {'precision': 0.3068181818181818, 'recall': 0.226890756302521, 'f1': 0.2608695652173913, 'number': 119} {'precision': 0.7171717171717171, 'recall': 0.8, 'f1': 0.7563249001331558, 'number': 1065} 0.6797 0.7697 0.7219 0.7951
0.4614 7.0 70 0.6517 {'precision': 0.7006507592190889, 'recall': 0.7985166872682324, 'f1': 0.7463893703061815, 'number': 809} {'precision': 0.26495726495726496, 'recall': 0.2605042016806723, 'f1': 0.2627118644067797, 'number': 119} {'precision': 0.7355442176870748, 'recall': 0.812206572769953, 'f1': 0.7719767960731816, 'number': 1065} 0.6962 0.7737 0.7329 0.8045
0.4076 8.0 80 0.6567 {'precision': 0.7194719471947195, 'recall': 0.8084054388133498, 'f1': 0.761350407450524, 'number': 809} {'precision': 0.2713178294573643, 'recall': 0.29411764705882354, 'f1': 0.28225806451612906, 'number': 119} {'precision': 0.7508561643835616, 'recall': 0.8234741784037559, 'f1': 0.7854903716972683, 'number': 1065} 0.7099 0.7858 0.7459 0.8056
0.3664 9.0 90 0.6529 {'precision': 0.7176724137931034, 'recall': 0.823238566131026, 'f1': 0.7668393782383419, 'number': 809} {'precision': 0.265625, 'recall': 0.2857142857142857, 'f1': 0.27530364372469635, 'number': 119} {'precision': 0.7686768676867687, 'recall': 0.8018779342723005, 'f1': 0.7849264705882354, 'number': 1065} 0.7171 0.7797 0.7471 0.8098
0.3515 10.0 100 0.6537 {'precision': 0.7129032258064516, 'recall': 0.8195302843016069, 'f1': 0.7625071880391028, 'number': 809} {'precision': 0.32075471698113206, 'recall': 0.2857142857142857, 'f1': 0.30222222222222217, 'number': 119} {'precision': 0.7788632326820604, 'recall': 0.8234741784037559, 'f1': 0.8005476951163851, 'number': 1065} 0.7280 0.7898 0.7576 0.8157
0.3077 11.0 110 0.6694 {'precision': 0.7241379310344828, 'recall': 0.8046971569839307, 'f1': 0.7622950819672132, 'number': 809} {'precision': 0.302158273381295, 'recall': 0.35294117647058826, 'f1': 0.3255813953488373, 'number': 119} {'precision': 0.7599653379549394, 'recall': 0.8234741784037559, 'f1': 0.790446146913024, 'number': 1065} 0.7162 0.7878 0.7503 0.8078
0.2941 12.0 120 0.6687 {'precision': 0.7135076252723311, 'recall': 0.8096415327564895, 'f1': 0.7585408222350897, 'number': 809} {'precision': 0.3053435114503817, 'recall': 0.33613445378151263, 'f1': 0.32000000000000006, 'number': 119} {'precision': 0.7793721973094171, 'recall': 0.815962441314554, 'f1': 0.7972477064220184, 'number': 1065} 0.7227 0.7847 0.7525 0.8118
0.2726 13.0 130 0.6769 {'precision': 0.720348204570185, 'recall': 0.8182941903584673, 'f1': 0.7662037037037037, 'number': 809} {'precision': 0.33064516129032256, 'recall': 0.3445378151260504, 'f1': 0.33744855967078186, 'number': 119} {'precision': 0.7713280562884784, 'recall': 0.8234741784037559, 'f1': 0.7965485921889193, 'number': 1065} 0.7248 0.7928 0.7572 0.8095
0.2575 14.0 140 0.6821 {'precision': 0.7238723872387238, 'recall': 0.8133498145859085, 'f1': 0.7660069848661233, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.3697478991596639, 'f1': 0.350597609561753, 'number': 119} {'precision': 0.7810545129579982, 'recall': 0.8206572769953052, 'f1': 0.8003663003663004, 'number': 1065} 0.7296 0.7908 0.7590 0.8095
0.2563 15.0 150 0.6795 {'precision': 0.7247807017543859, 'recall': 0.8170580964153276, 'f1': 0.768158047646717, 'number': 809} {'precision': 0.3208955223880597, 'recall': 0.36134453781512604, 'f1': 0.33992094861660077, 'number': 119} {'precision': 0.7793721973094171, 'recall': 0.815962441314554, 'f1': 0.7972477064220184, 'number': 1065} 0.7279 0.7893 0.7573 0.8097

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cpu
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
104
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for parthesh111/layoutlm-funsd

Finetuned
(149)
this model