distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1159
- Accuracy: 0.8148
- F1: 0.8147
- Precision: 0.8148
- Recall: 0.8148
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 1.0 | 81 | 1.3621 | 0.8148 | 0.8137 | 0.8189 | 0.8148 |
No log | 2.0 | 162 | 0.9435 | 0.8272 | 0.8272 | 0.8283 | 0.8272 |
No log | 3.0 | 243 | 1.3333 | 0.7778 | 0.7778 | 0.7789 | 0.7778 |
No log | 4.0 | 324 | 1.4928 | 0.8395 | 0.8388 | 0.8509 | 0.8395 |
No log | 5.0 | 405 | 1.7831 | 0.8025 | 0.8022 | 0.8028 | 0.8025 |
No log | 6.0 | 486 | 2.2104 | 0.8148 | 0.8137 | 0.8189 | 0.8148 |
0.1214 | 7.0 | 567 | 1.9896 | 0.8025 | 0.8022 | 0.8028 | 0.8025 |
0.1214 | 8.0 | 648 | 2.0504 | 0.8148 | 0.8147 | 0.8148 | 0.8148 |
0.1214 | 9.0 | 729 | 2.1091 | 0.8148 | 0.8147 | 0.8148 | 0.8148 |
0.1214 | 10.0 | 810 | 2.1159 | 0.8148 | 0.8147 | 0.8148 | 0.8148 |
Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for paraskohli096/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased