pandas2002's picture
update model card README.md
12f14f7
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- pubmed-summarization
metrics:
- rouge
model-index:
- name: my_awesome_billsum_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: pubmed-summarization
type: pubmed-summarization
config: section
split: test
args: section
metrics:
- name: Rouge1
type: rouge
value: 0.1393
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_billsum_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the pubmed-summarization dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3423
- Rouge1: 0.1393
- Rouge2: 0.0556
- Rougel: 0.1172
- Rougelsum: 0.1172
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 375 | 2.3755 | 0.1375 | 0.0538 | 0.1159 | 0.1159 | 19.0 |
| 2.6739 | 2.0 | 750 | 2.3423 | 0.1393 | 0.0556 | 0.1172 | 0.1172 | 19.0 |
### Framework versions
- Transformers 4.27.4
- Pytorch 1.13.1+cu116
- Datasets 2.11.0
- Tokenizers 0.13.2