|
--- |
|
language: |
|
- es |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- generated_from_trainer |
|
- hf-asr-leaderboard |
|
- mozilla-foundation/common_voice_7_0 |
|
- robust-speech-event |
|
datasets: |
|
- mozilla-foundation/common_voice_7_0 |
|
model-index: |
|
- name: xls-r-spanish-test |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 7 |
|
type: mozilla-foundation/common_voice_7_0 |
|
args: es |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 13.89 |
|
- name: Test CER |
|
type: cer |
|
value: 3.85 |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: es |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 37.66 |
|
- name: Test CER |
|
type: cer |
|
value: 15.32 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Test Data |
|
type: speech-recognition-community-v2/eval_data |
|
args: es |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 41.17 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - ES dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1461 |
|
- Wer: 1.0063 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- num_epochs: 5.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 2.953 | 0.15 | 1000 | 2.9528 | 1.0 | |
|
| 1.1519 | 0.3 | 2000 | 0.3735 | 1.0357 | |
|
| 1.0278 | 0.45 | 3000 | 0.2529 | 1.0390 | |
|
| 0.9922 | 0.61 | 4000 | 0.2208 | 1.0270 | |
|
| 0.9618 | 0.76 | 5000 | 0.2088 | 1.0294 | |
|
| 0.9364 | 0.91 | 6000 | 0.2019 | 1.0214 | |
|
| 0.9179 | 1.06 | 7000 | 0.1940 | 1.0294 | |
|
| 0.9154 | 1.21 | 8000 | 0.1915 | 1.0290 | |
|
| 0.8985 | 1.36 | 9000 | 0.1837 | 1.0211 | |
|
| 0.9055 | 1.51 | 10000 | 0.1838 | 1.0273 | |
|
| 0.8861 | 1.67 | 11000 | 0.1765 | 1.0139 | |
|
| 0.892 | 1.82 | 12000 | 0.1723 | 1.0188 | |
|
| 0.8778 | 1.97 | 13000 | 0.1735 | 1.0092 | |
|
| 0.8645 | 2.12 | 14000 | 0.1707 | 1.0106 | |
|
| 0.8595 | 2.27 | 15000 | 0.1713 | 1.0186 | |
|
| 0.8392 | 2.42 | 16000 | 0.1686 | 1.0053 | |
|
| 0.8436 | 2.57 | 17000 | 0.1653 | 1.0096 | |
|
| 0.8405 | 2.73 | 18000 | 0.1689 | 1.0077 | |
|
| 0.8382 | 2.88 | 19000 | 0.1645 | 1.0114 | |
|
| 0.8247 | 3.03 | 20000 | 0.1647 | 1.0078 | |
|
| 0.8219 | 3.18 | 21000 | 0.1611 | 1.0026 | |
|
| 0.8024 | 3.33 | 22000 | 0.1580 | 1.0062 | |
|
| 0.8087 | 3.48 | 23000 | 0.1578 | 1.0038 | |
|
| 0.8097 | 3.63 | 24000 | 0.1556 | 1.0057 | |
|
| 0.8094 | 3.79 | 25000 | 0.1552 | 1.0035 | |
|
| 0.7836 | 3.94 | 26000 | 0.1516 | 1.0052 | |
|
| 0.8042 | 4.09 | 27000 | 0.1515 | 1.0054 | |
|
| 0.7925 | 4.24 | 28000 | 0.1499 | 1.0031 | |
|
| 0.7855 | 4.39 | 29000 | 0.1490 | 1.0041 | |
|
| 0.7814 | 4.54 | 30000 | 0.1482 | 1.0068 | |
|
| 0.7859 | 4.69 | 31000 | 0.1460 | 1.0066 | |
|
| 0.7819 | 4.85 | 32000 | 0.1464 | 1.0062 | |
|
| 0.7784 | 5.0 | 33000 | 0.1460 | 1.0063 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.3.dev0 |
|
- Tokenizers 0.11.0 |
|
|