File size: 7,040 Bytes
db78959 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import gradio as gr
from PIL import Image
import os
import cv2
import numpy as np
import tensorflow as tf
W = 512
H = 512
""" Load the model """
# model_path = os.path.join("/content/drive/MyDrive/colab/", "cutted_full.h5")
edge_model = tf.keras.models.load_model("cutted_full.h5")
""" Load the model """
model_path = "finalize.h5"
extraction_model = tf.keras.models.load_model(model_path)
def read_image(path):
# path = path.decode()
x = cv2.imread(path, cv2.IMREAD_COLOR)
first_5_columns = x[500:-400, :50, :]
last_5_columns = x[500:-400, -50:, :]
new_image = np.concatenate((first_5_columns, last_5_columns), axis=1)
x = cv2.resize(new_image, (H, W))
x = x / 255.0
x = np.expand_dims(x, axis=0)
return x
def edger(image_path,model):
image = read_image(image_path)
print("completed reading")
print(image.shape)
""" Prediction """
pred = model.predict(image, verbose=0)
n = np.array(pred)
n.shape
pr = (n * 255).astype(np.uint8)
return pr[1][0]
def reshaping(original_image):
image = cv2.resize(original_image,(512,788))
height, width = image.shape[:2]
top_rows = 500
bottom_rows = 400
empty_row = np.zeros((1, width), dtype=np.uint8)
for _ in range(top_rows):
image = np.vstack((empty_row, image))
for _ in range(bottom_rows):
image = np.vstack((image, empty_row))
return image
def background_generator(image_path,model):
# Load the original image
# original = cv2.imread('original.jpg')
# height, width, channel = original.shape
height, width = 1688,3008
background_color = (240, 240, 240)
image = np.full((height, width, 3), background_color, dtype=np.uint8)
# Edge Game
######################################################################
original_image = edger(image_path,model)
original_image = reshaping(original_image)
# original_image = cv2.resize(original_image,(3008,1688))
print(original_image.shape)
# Find the biggest edge on the left side
left_edge = np.max(original_image[:, :5])
print(left_edge)
# Find the biggest edge on the right side
right_edge = np.max(original_image[:, -5:])
print(right_edge)
######################################################################
# Draw a curved black line resembling where the wall starts
line_color = (0, 0, 0)
line_thickness = 30
# Use the positions of the left and right maximum points as control points
left_max_row = np.argmax(original_image[:, 5])
right_max_row = np.argmax(original_image[:, -5])
print(left_max_row)
print(right_max_row)
# Define the curve using control points
start_point = (0, left_max_row)
end_point = (width, right_max_row)
control_point = (width // 2, int(left_max_row-0.18 * height))
# Get the height and width of the image
height, width = image.shape[:2]
# Calculate the midpoint
midpoint = height // 2
# Split the image into upper and lower halves
upper_half = image[:midpoint, :]
lower_half = image[midpoint:, :]
# Change the color of the lower half
lower_half[:] = (240, 240, 240)
# Draw the straight line in the middle
completing_line_start = (1 * width // 10, int(0.49 * height))
completing_line_end = (8 * width // 10, int(0.49 * height))
completing_line_color = (240, 240, 240)
completing_line_thickness = 60
cv2.line(image, completing_line_start, completing_line_end, completing_line_color, completing_line_thickness, cv2.LINE_AA)
# Generate a set of points along the curve using quadratic Bezier curve formula
t = np.linspace(0, 1, 100)
curve_points = [(int((1 - x) ** 2 * start_point[0] + 2 * (1 - x) * x * control_point[0] + x ** 2 * end_point[0]),
int((1 - x) ** 2 * start_point[1] + 2 * (1 - x) * x * control_point[1] + x ** 2 * end_point[1]))
for x in t]
for i in range(1, len(curve_points)):
cv2.line(image, curve_points[i - 1], curve_points[i], line_color, line_thickness, cv2.LINE_AA)
blur_radius = 9
image = cv2.GaussianBlur(image, (blur_radius, blur_radius), 0)
# cv2.imwrite("results/background.jpg", image)
return image
def merging(car_path,background_path):
car = Image.open(car_path)
background = Image.open(background_path)
car = car.resize(background.size)
merged_image = Image.alpha_composite(background.convert('RGBA'), car.convert('RGBA'))
return merged_image
""" Creating a directory """
def create_dir(path):
if not os.path.exists(path):
os.makedirs(path)
def prediction(image):
""" Directory for storing files """
for item in ["joint", "mask", "extracted"]:
create_dir(f"results/{item}")
name = "input_image"
image_path = "results/temp.jpg"
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.imwrite(image_path,image)
x = cv2.resize(image, (W, H))
x = x / 255.0
x = np.expand_dims(x, axis=0)
""" Prediction """
pred = extraction_model.predict(x, verbose=0)
line = np.ones((H, 10, 4)) * 255
pred_list = []
for item in pred:
p = item[0] * 255
p = np.concatenate([p, p, p, p], axis=-1)
pred_list.append(p)
pred_list.append(line)
cat_images = np.concatenate(pred_list, axis=1)
""" Save final mask """
image_h, image_w, _ = image.shape
y0 = pred[0][0]
y0 = cv2.resize(y0, (image_w, image_h))
y0 = np.expand_dims(y0, axis=-1)
ny = np.where(y0 > 0, 1, y0)
rgb = image[:, :, 0:3]
alpha = y0 * 255
final = np.concatenate((rgb.copy(), alpha), axis=2)
yy = cv2.merge((ny.copy(), ny.copy(), ny.copy(), y0.copy()))
mask = yy * 255
line = np.ones((image_h, 10, 4)) * 255
# cat_images = np.concatenate([mask, line, final], axis=1)
# Save the final image with alpha channel and the mask image
final_image_path = f"results/extracted/{name}.png"
mask_image_path = f"results/mask/{name}.png"
cv2.imwrite(final_image_path, final)
cv2.imwrite(mask_image_path, mask)
# Read both images with IMREAD_UNCHANGED
final_image = cv2.imread(final_image_path, cv2.IMREAD_UNCHANGED)
mask_image = cv2.imread(mask_image_path, cv2.IMREAD_UNCHANGED)
# Convert to RGB color space
final_image_rgb = cv2.cvtColor(final_image, cv2.COLOR_BGRA2RGBA)
# mask_image_rgb = cv2.cvtColor(mask_image, cv2.COLOR_BGR2RGB)
back = background_generator(image_path,edge_model)
cv2.imwrite("background.jpg",back)
final = merging(final_image_path,"background.jpg")
final.save("results/merged.png")
complete = cv2.imread("results/merged.png")
complete = cv2.cvtColor(complete, cv2.COLOR_RGB2BGR)
return final_image_rgb, mask_image, complete
# Create a Gradio interface with two output components
iface = gr.Interface(fn=prediction, inputs="image", outputs=["image", "image", "image"], title="Image Segmentation with New Background")
iface.launch() |