File size: 7,040 Bytes
db78959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import gradio as gr
from PIL import Image
import os
import cv2
import numpy as np
import tensorflow as tf

W = 512
H = 512

""" Load the model """
# model_path = os.path.join("/content/drive/MyDrive/colab/", "cutted_full.h5")
edge_model = tf.keras.models.load_model("cutted_full.h5")

""" Load the model """
model_path = "finalize.h5"
extraction_model = tf.keras.models.load_model(model_path)

def read_image(path):
    # path = path.decode()
    x = cv2.imread(path, cv2.IMREAD_COLOR)
    first_5_columns = x[500:-400, :50, :]
    last_5_columns = x[500:-400, -50:, :]
    new_image = np.concatenate((first_5_columns, last_5_columns), axis=1)
    x = cv2.resize(new_image, (H, W))
    x = x / 255.0
    x = np.expand_dims(x, axis=0)
    return x


def edger(image_path,model):
    image = read_image(image_path)
    print("completed reading")
    print(image.shape)

    """ Prediction """
    pred = model.predict(image, verbose=0)

    n = np.array(pred)
    n.shape

    pr = (n * 255).astype(np.uint8)
    return pr[1][0]

def reshaping(original_image):
    image = cv2.resize(original_image,(512,788))

    height, width = image.shape[:2] 

    top_rows = 500
    bottom_rows = 400

    empty_row = np.zeros((1, width), dtype=np.uint8)

    for _ in range(top_rows):
        image = np.vstack((empty_row, image))

    for _ in range(bottom_rows):
        image = np.vstack((image, empty_row))

    return image

def background_generator(image_path,model):
    # Load the original image
    # original = cv2.imread('original.jpg')
    # height, width, channel = original.shape
    height, width = 1688,3008

    background_color = (240, 240, 240)
    image = np.full((height, width, 3), background_color, dtype=np.uint8)

    # Edge Game
    ######################################################################

    original_image = edger(image_path,model)

    original_image = reshaping(original_image)

    # original_image = cv2.resize(original_image,(3008,1688))

    print(original_image.shape)

    # Find the biggest edge on the left side
    left_edge = np.max(original_image[:, :5])
    print(left_edge)

    # Find the biggest edge on the right side
    right_edge = np.max(original_image[:, -5:])
    print(right_edge)

    ######################################################################

    # Draw a curved black line resembling where the wall starts
    line_color = (0, 0, 0)
    line_thickness = 30

    # Use the positions of the left and right maximum points as control points
    left_max_row = np.argmax(original_image[:, 5])
    right_max_row = np.argmax(original_image[:, -5])
    print(left_max_row)
    print(right_max_row)

    # Define the curve using control points
    start_point = (0, left_max_row)
    end_point = (width, right_max_row)
    control_point = (width // 2, int(left_max_row-0.18 * height))

    # Get the height and width of the image
    height, width = image.shape[:2]

    # Calculate the midpoint
    midpoint = height // 2

    # Split the image into upper and lower halves
    upper_half = image[:midpoint, :]
    lower_half = image[midpoint:, :]

    # Change the color of the lower half
    lower_half[:] = (240, 240, 240)

    # Draw the straight line in the middle
    completing_line_start = (1 * width // 10, int(0.49 * height))
    completing_line_end = (8 * width // 10, int(0.49 * height))
    completing_line_color = (240, 240, 240)
    completing_line_thickness = 60
    cv2.line(image, completing_line_start, completing_line_end, completing_line_color, completing_line_thickness, cv2.LINE_AA)

    # Generate a set of points along the curve using quadratic Bezier curve formula
    t = np.linspace(0, 1, 100)
    curve_points = [(int((1 - x) ** 2 * start_point[0] + 2 * (1 - x) * x * control_point[0] + x ** 2 * end_point[0]),
                    int((1 - x) ** 2 * start_point[1] + 2 * (1 - x) * x * control_point[1] + x ** 2 * end_point[1]))
                    for x in t]
    
    for i in range(1, len(curve_points)):
        cv2.line(image, curve_points[i - 1], curve_points[i], line_color, line_thickness, cv2.LINE_AA)

    blur_radius = 9
    image = cv2.GaussianBlur(image, (blur_radius, blur_radius), 0)

    # cv2.imwrite("results/background.jpg", image)
    return image

    

def merging(car_path,background_path):
    car = Image.open(car_path)
    background = Image.open(background_path)
    car = car.resize(background.size)
    merged_image = Image.alpha_composite(background.convert('RGBA'), car.convert('RGBA'))
    return merged_image

""" Creating a directory """
def create_dir(path):
    if not os.path.exists(path):
        os.makedirs(path)

def prediction(image):
    """ Directory for storing files """
    for item in ["joint", "mask", "extracted"]:
        create_dir(f"results/{item}")
    
    name = "input_image"
    image_path = "results/temp.jpg" 

    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    cv2.imwrite(image_path,image)
    x = cv2.resize(image, (W, H))
    x = x / 255.0
    x = np.expand_dims(x, axis=0)

    """ Prediction """
    pred = extraction_model.predict(x, verbose=0)

    line = np.ones((H, 10, 4)) * 255

    pred_list = []
    for item in pred:
        p = item[0] * 255
        p = np.concatenate([p, p, p, p], axis=-1)

        pred_list.append(p)
        pred_list.append(line)

    cat_images = np.concatenate(pred_list, axis=1)

    """ Save final mask """
    image_h, image_w, _ = image.shape

    y0 = pred[0][0]
    y0 = cv2.resize(y0, (image_w, image_h))
    y0 = np.expand_dims(y0, axis=-1)
    ny = np.where(y0 > 0, 1, y0)

    rgb = image[:, :, 0:3]
    alpha = y0 * 255

    final = np.concatenate((rgb.copy(), alpha), axis=2)
    yy = cv2.merge((ny.copy(), ny.copy(), ny.copy(), y0.copy()))
    mask = yy * 255

    line = np.ones((image_h, 10, 4)) * 255

    # cat_images = np.concatenate([mask, line, final], axis=1)

    # Save the final image with alpha channel and the mask image
    final_image_path = f"results/extracted/{name}.png"
    mask_image_path = f"results/mask/{name}.png"

    cv2.imwrite(final_image_path, final)
    cv2.imwrite(mask_image_path, mask)

    # Read both images with IMREAD_UNCHANGED
    final_image = cv2.imread(final_image_path, cv2.IMREAD_UNCHANGED)
    mask_image = cv2.imread(mask_image_path, cv2.IMREAD_UNCHANGED)

    # Convert to RGB color space
    final_image_rgb = cv2.cvtColor(final_image, cv2.COLOR_BGRA2RGBA)
    # mask_image_rgb = cv2.cvtColor(mask_image, cv2.COLOR_BGR2RGB)

    back = background_generator(image_path,edge_model)
    cv2.imwrite("background.jpg",back)
    final = merging(final_image_path,"background.jpg")
    final.save("results/merged.png")
    
    complete = cv2.imread("results/merged.png")

    complete = cv2.cvtColor(complete, cv2.COLOR_RGB2BGR)
    
    return final_image_rgb, mask_image, complete


# Create a Gradio interface with two output components
iface = gr.Interface(fn=prediction, inputs="image", outputs=["image", "image", "image"], title="Image Segmentation with New Background")
iface.launch()