Upload 3 files
Browse files- cutted_full.h5 +3 -0
- final.py +234 -0
- finalize.h5 +3 -0
cutted_full.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02ce1cdf9f00d2d984231406815842f9335424c154abb0c5f59701a6e185f882
|
3 |
+
size 530371808
|
final.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import os
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
import tensorflow as tf
|
7 |
+
|
8 |
+
W = 512
|
9 |
+
H = 512
|
10 |
+
|
11 |
+
""" Load the model """
|
12 |
+
# model_path = os.path.join("/content/drive/MyDrive/colab/", "cutted_full.h5")
|
13 |
+
edge_model = tf.keras.models.load_model("cutted_full.h5")
|
14 |
+
|
15 |
+
""" Load the model """
|
16 |
+
model_path = "finalize.h5"
|
17 |
+
extraction_model = tf.keras.models.load_model(model_path)
|
18 |
+
|
19 |
+
def read_image(path):
|
20 |
+
# path = path.decode()
|
21 |
+
x = cv2.imread(path, cv2.IMREAD_COLOR)
|
22 |
+
first_5_columns = x[500:-400, :50, :]
|
23 |
+
last_5_columns = x[500:-400, -50:, :]
|
24 |
+
new_image = np.concatenate((first_5_columns, last_5_columns), axis=1)
|
25 |
+
x = cv2.resize(new_image, (H, W))
|
26 |
+
x = x / 255.0
|
27 |
+
x = np.expand_dims(x, axis=0)
|
28 |
+
return x
|
29 |
+
|
30 |
+
|
31 |
+
def edger(image_path,model):
|
32 |
+
image = read_image(image_path)
|
33 |
+
print("completed reading")
|
34 |
+
print(image.shape)
|
35 |
+
|
36 |
+
""" Prediction """
|
37 |
+
pred = model.predict(image, verbose=0)
|
38 |
+
|
39 |
+
n = np.array(pred)
|
40 |
+
n.shape
|
41 |
+
|
42 |
+
pr = (n * 255).astype(np.uint8)
|
43 |
+
return pr[1][0]
|
44 |
+
|
45 |
+
def reshaping(original_image):
|
46 |
+
image = cv2.resize(original_image,(512,788))
|
47 |
+
|
48 |
+
height, width = image.shape[:2]
|
49 |
+
|
50 |
+
top_rows = 500
|
51 |
+
bottom_rows = 400
|
52 |
+
|
53 |
+
empty_row = np.zeros((1, width), dtype=np.uint8)
|
54 |
+
|
55 |
+
for _ in range(top_rows):
|
56 |
+
image = np.vstack((empty_row, image))
|
57 |
+
|
58 |
+
for _ in range(bottom_rows):
|
59 |
+
image = np.vstack((image, empty_row))
|
60 |
+
|
61 |
+
return image
|
62 |
+
|
63 |
+
def background_generator(image_path,model):
|
64 |
+
# Load the original image
|
65 |
+
# original = cv2.imread('original.jpg')
|
66 |
+
# height, width, channel = original.shape
|
67 |
+
height, width = 1688,3008
|
68 |
+
|
69 |
+
background_color = (240, 240, 240)
|
70 |
+
image = np.full((height, width, 3), background_color, dtype=np.uint8)
|
71 |
+
|
72 |
+
# Edge Game
|
73 |
+
######################################################################
|
74 |
+
|
75 |
+
original_image = edger(image_path,model)
|
76 |
+
|
77 |
+
original_image = reshaping(original_image)
|
78 |
+
|
79 |
+
# original_image = cv2.resize(original_image,(3008,1688))
|
80 |
+
|
81 |
+
print(original_image.shape)
|
82 |
+
|
83 |
+
# Find the biggest edge on the left side
|
84 |
+
left_edge = np.max(original_image[:, :5])
|
85 |
+
print(left_edge)
|
86 |
+
|
87 |
+
# Find the biggest edge on the right side
|
88 |
+
right_edge = np.max(original_image[:, -5:])
|
89 |
+
print(right_edge)
|
90 |
+
|
91 |
+
######################################################################
|
92 |
+
|
93 |
+
# Draw a curved black line resembling where the wall starts
|
94 |
+
line_color = (0, 0, 0)
|
95 |
+
line_thickness = 30
|
96 |
+
|
97 |
+
# Use the positions of the left and right maximum points as control points
|
98 |
+
left_max_row = np.argmax(original_image[:, 5])
|
99 |
+
right_max_row = np.argmax(original_image[:, -5])
|
100 |
+
print(left_max_row)
|
101 |
+
print(right_max_row)
|
102 |
+
|
103 |
+
# Define the curve using control points
|
104 |
+
start_point = (0, left_max_row)
|
105 |
+
end_point = (width, right_max_row)
|
106 |
+
control_point = (width // 2, int(left_max_row-0.18 * height))
|
107 |
+
|
108 |
+
# Get the height and width of the image
|
109 |
+
height, width = image.shape[:2]
|
110 |
+
|
111 |
+
# Calculate the midpoint
|
112 |
+
midpoint = height // 2
|
113 |
+
|
114 |
+
# Split the image into upper and lower halves
|
115 |
+
upper_half = image[:midpoint, :]
|
116 |
+
lower_half = image[midpoint:, :]
|
117 |
+
|
118 |
+
# Change the color of the lower half
|
119 |
+
lower_half[:] = (240, 240, 240)
|
120 |
+
|
121 |
+
# Draw the straight line in the middle
|
122 |
+
completing_line_start = (1 * width // 10, int(0.49 * height))
|
123 |
+
completing_line_end = (8 * width // 10, int(0.49 * height))
|
124 |
+
completing_line_color = (240, 240, 240)
|
125 |
+
completing_line_thickness = 60
|
126 |
+
cv2.line(image, completing_line_start, completing_line_end, completing_line_color, completing_line_thickness, cv2.LINE_AA)
|
127 |
+
|
128 |
+
# Generate a set of points along the curve using quadratic Bezier curve formula
|
129 |
+
t = np.linspace(0, 1, 100)
|
130 |
+
curve_points = [(int((1 - x) ** 2 * start_point[0] + 2 * (1 - x) * x * control_point[0] + x ** 2 * end_point[0]),
|
131 |
+
int((1 - x) ** 2 * start_point[1] + 2 * (1 - x) * x * control_point[1] + x ** 2 * end_point[1]))
|
132 |
+
for x in t]
|
133 |
+
|
134 |
+
for i in range(1, len(curve_points)):
|
135 |
+
cv2.line(image, curve_points[i - 1], curve_points[i], line_color, line_thickness, cv2.LINE_AA)
|
136 |
+
|
137 |
+
blur_radius = 9
|
138 |
+
image = cv2.GaussianBlur(image, (blur_radius, blur_radius), 0)
|
139 |
+
|
140 |
+
# cv2.imwrite("results/background.jpg", image)
|
141 |
+
return image
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
def merging(car_path,background_path):
|
146 |
+
car = Image.open(car_path)
|
147 |
+
background = Image.open(background_path)
|
148 |
+
car = car.resize(background.size)
|
149 |
+
merged_image = Image.alpha_composite(background.convert('RGBA'), car.convert('RGBA'))
|
150 |
+
return merged_image
|
151 |
+
|
152 |
+
""" Creating a directory """
|
153 |
+
def create_dir(path):
|
154 |
+
if not os.path.exists(path):
|
155 |
+
os.makedirs(path)
|
156 |
+
|
157 |
+
def prediction(image):
|
158 |
+
""" Directory for storing files """
|
159 |
+
for item in ["joint", "mask", "extracted"]:
|
160 |
+
create_dir(f"results/{item}")
|
161 |
+
|
162 |
+
name = "input_image"
|
163 |
+
image_path = "results/temp.jpg"
|
164 |
+
|
165 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
166 |
+
cv2.imwrite(image_path,image)
|
167 |
+
x = cv2.resize(image, (W, H))
|
168 |
+
x = x / 255.0
|
169 |
+
x = np.expand_dims(x, axis=0)
|
170 |
+
|
171 |
+
""" Prediction """
|
172 |
+
pred = extraction_model.predict(x, verbose=0)
|
173 |
+
|
174 |
+
line = np.ones((H, 10, 4)) * 255
|
175 |
+
|
176 |
+
pred_list = []
|
177 |
+
for item in pred:
|
178 |
+
p = item[0] * 255
|
179 |
+
p = np.concatenate([p, p, p, p], axis=-1)
|
180 |
+
|
181 |
+
pred_list.append(p)
|
182 |
+
pred_list.append(line)
|
183 |
+
|
184 |
+
cat_images = np.concatenate(pred_list, axis=1)
|
185 |
+
|
186 |
+
""" Save final mask """
|
187 |
+
image_h, image_w, _ = image.shape
|
188 |
+
|
189 |
+
y0 = pred[0][0]
|
190 |
+
y0 = cv2.resize(y0, (image_w, image_h))
|
191 |
+
y0 = np.expand_dims(y0, axis=-1)
|
192 |
+
ny = np.where(y0 > 0, 1, y0)
|
193 |
+
|
194 |
+
rgb = image[:, :, 0:3]
|
195 |
+
alpha = y0 * 255
|
196 |
+
|
197 |
+
final = np.concatenate((rgb.copy(), alpha), axis=2)
|
198 |
+
yy = cv2.merge((ny.copy(), ny.copy(), ny.copy(), y0.copy()))
|
199 |
+
mask = yy * 255
|
200 |
+
|
201 |
+
line = np.ones((image_h, 10, 4)) * 255
|
202 |
+
|
203 |
+
# cat_images = np.concatenate([mask, line, final], axis=1)
|
204 |
+
|
205 |
+
# Save the final image with alpha channel and the mask image
|
206 |
+
final_image_path = f"results/extracted/{name}.png"
|
207 |
+
mask_image_path = f"results/mask/{name}.png"
|
208 |
+
|
209 |
+
cv2.imwrite(final_image_path, final)
|
210 |
+
cv2.imwrite(mask_image_path, mask)
|
211 |
+
|
212 |
+
# Read both images with IMREAD_UNCHANGED
|
213 |
+
final_image = cv2.imread(final_image_path, cv2.IMREAD_UNCHANGED)
|
214 |
+
mask_image = cv2.imread(mask_image_path, cv2.IMREAD_UNCHANGED)
|
215 |
+
|
216 |
+
# Convert to RGB color space
|
217 |
+
final_image_rgb = cv2.cvtColor(final_image, cv2.COLOR_BGRA2RGBA)
|
218 |
+
# mask_image_rgb = cv2.cvtColor(mask_image, cv2.COLOR_BGR2RGB)
|
219 |
+
|
220 |
+
back = background_generator(image_path,edge_model)
|
221 |
+
cv2.imwrite("background.jpg",back)
|
222 |
+
final = merging(final_image_path,"background.jpg")
|
223 |
+
final.save("results/merged.png")
|
224 |
+
|
225 |
+
complete = cv2.imread("results/merged.png")
|
226 |
+
|
227 |
+
complete = cv2.cvtColor(complete, cv2.COLOR_RGB2BGR)
|
228 |
+
|
229 |
+
return final_image_rgb, mask_image, complete
|
230 |
+
|
231 |
+
|
232 |
+
# Create a Gradio interface with two output components
|
233 |
+
iface = gr.Interface(fn=prediction, inputs="image", outputs=["image", "image", "image"], title="Image Segmentation with New Background")
|
234 |
+
iface.launch()
|
finalize.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eaeda232f5fe6f2f59df7ba6ffd73d198278f38288af1e50ca430f2fe12a777d
|
3 |
+
size 530371464
|