Delete processor_multitokenizers.py
Browse files- processor_multitokenizers.py +0 -285
processor_multitokenizers.py
DELETED
@@ -1,285 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import warnings
|
4 |
-
from pathlib import Path
|
5 |
-
|
6 |
-
|
7 |
-
import torch
|
8 |
-
import torch.nn as nn
|
9 |
-
|
10 |
-
from transformers import (
|
11 |
-
PreTrainedTokenizer,
|
12 |
-
PreTrainedTokenizerBase,
|
13 |
-
ProcessorMixin,
|
14 |
-
BatchFeature,
|
15 |
-
)
|
16 |
-
from transformers.utils import (
|
17 |
-
logging,
|
18 |
-
direct_transformers_import,
|
19 |
-
PROCESSOR_NAME,
|
20 |
-
CHAT_TEMPLATE_NAME,
|
21 |
-
)
|
22 |
-
from transformers.image_utils import ImageInput
|
23 |
-
from transformers.dynamic_module_utils import custom_object_save
|
24 |
-
|
25 |
-
logger = logging.get_logger(__name__)
|
26 |
-
|
27 |
-
# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
|
28 |
-
transformers_module = direct_transformers_import(Path(__file__).parent)
|
29 |
-
|
30 |
-
|
31 |
-
class MultiTokenizersProcessorKwargs:
|
32 |
-
_defaults = {
|
33 |
-
"tokenizer_1_kwargs": {
|
34 |
-
"padding": False,
|
35 |
-
},
|
36 |
-
"tokenizer_2_kwargs": {
|
37 |
-
"padding": False,
|
38 |
-
},
|
39 |
-
}
|
40 |
-
|
41 |
-
|
42 |
-
class MultiTokenizersProcessor(ProcessorMixin):
|
43 |
-
attributes = ["tokenizer_1", "tokenizer_2"]
|
44 |
-
valid_kwargs = ["chat_template"]
|
45 |
-
tokenizer_1_class = "AutoTokenizer"
|
46 |
-
tokenizer_2_class = "AutoTokenizer"
|
47 |
-
|
48 |
-
tokenizer_1: PreTrainedTokenizer
|
49 |
-
tokenizer_2: PreTrainedTokenizer
|
50 |
-
|
51 |
-
def __init__(
|
52 |
-
self,
|
53 |
-
tokenizer_1=None,
|
54 |
-
tokenizer_2=None,
|
55 |
-
chat_template=None,
|
56 |
-
**kwargs,
|
57 |
-
):
|
58 |
-
super().__init__(
|
59 |
-
tokenizer_1,
|
60 |
-
tokenizer_2,
|
61 |
-
chat_template=chat_template,
|
62 |
-
**kwargs,
|
63 |
-
)
|
64 |
-
|
65 |
-
def __call__(
|
66 |
-
self,
|
67 |
-
text_1: str | list[str] | None = None,
|
68 |
-
text_2: str | list[str] | None = None,
|
69 |
-
**kwargs,
|
70 |
-
) -> BatchFeature:
|
71 |
-
def _validate_text_input(text) -> str | list[str]:
|
72 |
-
if isinstance(text, list):
|
73 |
-
assert all(
|
74 |
-
isinstance(t, str) for t in text
|
75 |
-
), f"Expected list of str but got {type(text)}"
|
76 |
-
assert all(len(t) > 0 for t in text), "Expected non-empty strings"
|
77 |
-
else:
|
78 |
-
assert isinstance(text, str), f"Expected str but got {type(text)}"
|
79 |
-
return text
|
80 |
-
|
81 |
-
def _normalize_text_input(text: str | list[str]) -> list[str]:
|
82 |
-
if isinstance(text, str):
|
83 |
-
return [text]
|
84 |
-
return text
|
85 |
-
|
86 |
-
_text_1: str | list[str] = _validate_text_input(text_1)
|
87 |
-
text_1_list: list[str] = _normalize_text_input(_text_1)
|
88 |
-
_text_2: str | list[str] = _validate_text_input(text_2)
|
89 |
-
text_2_list: list[str] = _normalize_text_input(_text_2)
|
90 |
-
|
91 |
-
tokenizer_1_output_kwargs = {
|
92 |
-
**MultiTokenizersProcessorKwargs._defaults["tokenizer_1_kwargs"],
|
93 |
-
"return_tensors": "pt",
|
94 |
-
**kwargs,
|
95 |
-
}
|
96 |
-
tokenizer_2_output_kwargs = {
|
97 |
-
**MultiTokenizersProcessorKwargs._defaults["tokenizer_2_kwargs"],
|
98 |
-
"return_tensors": "pt",
|
99 |
-
**kwargs,
|
100 |
-
}
|
101 |
-
|
102 |
-
# tokenize
|
103 |
-
text_1_inputs = self.tokenizer_1(
|
104 |
-
text_1_list,
|
105 |
-
**tokenizer_1_output_kwargs,
|
106 |
-
)
|
107 |
-
text_2_inputs = self.tokenizer_2(
|
108 |
-
text_2_list,
|
109 |
-
**tokenizer_2_output_kwargs,
|
110 |
-
)
|
111 |
-
|
112 |
-
return BatchFeature(
|
113 |
-
data={
|
114 |
-
"input_ids": text_1_inputs.get("input_ids"),
|
115 |
-
"attention_mask": text_1_inputs.get("attention_mask"),
|
116 |
-
"input_ids_2": text_2_inputs.get("input_ids"),
|
117 |
-
"attention_mask_2": text_2_inputs.get("attention_mask"),
|
118 |
-
}
|
119 |
-
)
|
120 |
-
|
121 |
-
def batch_decode(self, *args, **kwargs):
|
122 |
-
"""
|
123 |
-
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
124 |
-
refer to the docstring of this method for more information.
|
125 |
-
"""
|
126 |
-
return self.tokenizer_2_tokenizer.batch_decode(*args, **kwargs)
|
127 |
-
|
128 |
-
def decode(self, *args, **kwargs):
|
129 |
-
"""
|
130 |
-
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
131 |
-
the docstring of this method for more information.
|
132 |
-
"""
|
133 |
-
return self.tokenizer_2_tokenizer.decode(*args, **kwargs)
|
134 |
-
|
135 |
-
@property
|
136 |
-
def model_input_names(self):
|
137 |
-
return ["text_1", "text_2"]
|
138 |
-
|
139 |
-
# edit from: https://github.com/huggingface/transformers/blob/1d063793318b20654ebb850f48f43e0a247ab7bb/src/transformers/processing_utils.py#L980-L995
|
140 |
-
@classmethod
|
141 |
-
def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
142 |
-
args = []
|
143 |
-
for attribute_name in cls.attributes:
|
144 |
-
class_name = getattr(cls, f"{attribute_name}_class")
|
145 |
-
subfolder = attribute_name # subfolder is the same as attribute_name
|
146 |
-
if isinstance(class_name, tuple):
|
147 |
-
classes = tuple(
|
148 |
-
getattr(transformers_module, n) if n is not None else None
|
149 |
-
for n in class_name
|
150 |
-
)
|
151 |
-
use_fast = kwargs.get("use_fast", True)
|
152 |
-
if use_fast and classes[1] is not None:
|
153 |
-
attribute_class = classes[1]
|
154 |
-
else:
|
155 |
-
attribute_class = classes[0]
|
156 |
-
else:
|
157 |
-
attribute_class = getattr(transformers_module, class_name)
|
158 |
-
|
159 |
-
assert attribute_class is not None, f"Missing attribute class: {class_name}"
|
160 |
-
args.append(
|
161 |
-
attribute_class.from_pretrained(
|
162 |
-
pretrained_model_name_or_path,
|
163 |
-
subfolder=subfolder,
|
164 |
-
**kwargs,
|
165 |
-
)
|
166 |
-
)
|
167 |
-
return args
|
168 |
-
|
169 |
-
# edit from: https://github.com/huggingface/transformers/blob/1d063793318b20654ebb850f48f43e0a247ab7bb/src/transformers/processing_utils.py#L460-L560
|
170 |
-
def save_pretrained(self, save_directory, push_to_hub: bool = False, **kwargs):
|
171 |
-
"""
|
172 |
-
Saves the attributes of this processor (feature extractor, tokenizer...) in the specified directory so that it
|
173 |
-
can be reloaded using the [`~ProcessorMixin.from_pretrained`] method.
|
174 |
-
|
175 |
-
<Tip>
|
176 |
-
|
177 |
-
This class method is simply calling [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] and
|
178 |
-
[`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`]. Please refer to the docstrings of the
|
179 |
-
methods above for more information.
|
180 |
-
|
181 |
-
</Tip>
|
182 |
-
|
183 |
-
Args:
|
184 |
-
save_directory (`str` or `os.PathLike`):
|
185 |
-
Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will
|
186 |
-
be created if it does not exist).
|
187 |
-
push_to_hub (`bool`, *optional*, defaults to `False`):
|
188 |
-
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
189 |
-
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
190 |
-
namespace).
|
191 |
-
kwargs (`Dict[str, Any]`, *optional*):
|
192 |
-
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
193 |
-
"""
|
194 |
-
use_auth_token = kwargs.pop("use_auth_token", None)
|
195 |
-
|
196 |
-
if use_auth_token is not None:
|
197 |
-
warnings.warn(
|
198 |
-
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
199 |
-
FutureWarning,
|
200 |
-
)
|
201 |
-
if kwargs.get("token", None) is not None:
|
202 |
-
raise ValueError(
|
203 |
-
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
204 |
-
)
|
205 |
-
kwargs["token"] = use_auth_token
|
206 |
-
|
207 |
-
os.makedirs(save_directory, exist_ok=True)
|
208 |
-
|
209 |
-
if push_to_hub:
|
210 |
-
commit_message = kwargs.pop("commit_message", None)
|
211 |
-
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
212 |
-
repo_id = self._create_repo(repo_id, **kwargs)
|
213 |
-
files_timestamps = self._get_files_timestamps(save_directory)
|
214 |
-
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
|
215 |
-
# loaded from the Hub.
|
216 |
-
if self._auto_class is not None:
|
217 |
-
attrs = [
|
218 |
-
getattr(self, attribute_name) for attribute_name in self.attributes
|
219 |
-
]
|
220 |
-
configs = [
|
221 |
-
(a.init_kwargs if isinstance(a, PreTrainedTokenizerBase) else a)
|
222 |
-
for a in attrs
|
223 |
-
]
|
224 |
-
configs.append(self)
|
225 |
-
custom_object_save(self, save_directory, config=configs)
|
226 |
-
|
227 |
-
for attribute_name in self.attributes:
|
228 |
-
attribute = getattr(self, attribute_name)
|
229 |
-
# Include the processor class in the attribute config so this processor can then be reloaded with the
|
230 |
-
# `AutoProcessor` API.
|
231 |
-
if hasattr(attribute, "_set_processor_class"):
|
232 |
-
attribute._set_processor_class(self.__class__.__name__)
|
233 |
-
attribute.save_pretrained(
|
234 |
-
os.path.join(
|
235 |
-
save_directory,
|
236 |
-
attribute_name, # CHANGED: save to subfolder
|
237 |
-
),
|
238 |
-
)
|
239 |
-
|
240 |
-
if self._auto_class is not None:
|
241 |
-
# We added an attribute to the init_kwargs of the tokenizers, which needs to be cleaned up.
|
242 |
-
for attribute_name in self.attributes:
|
243 |
-
attribute = getattr(self, attribute_name)
|
244 |
-
if isinstance(attribute, PreTrainedTokenizerBase):
|
245 |
-
del attribute.init_kwargs["auto_map"]
|
246 |
-
|
247 |
-
# If we save using the predefined names, we can load using `from_pretrained`
|
248 |
-
# plus we save chat_template in its own file
|
249 |
-
output_processor_file = os.path.join(save_directory, PROCESSOR_NAME)
|
250 |
-
output_chat_template_file = os.path.join(save_directory, CHAT_TEMPLATE_NAME)
|
251 |
-
|
252 |
-
processor_dict = self.to_dict()
|
253 |
-
# Save `chat_template` in its own file. We can't get it from `processor_dict` as we popped it in `to_dict`
|
254 |
-
# to avoid serializing chat template in json config file. So let's get it from `self` directly
|
255 |
-
if self.chat_template is not None:
|
256 |
-
chat_template_json_string = (
|
257 |
-
json.dumps(
|
258 |
-
{"chat_template": self.chat_template}, indent=2, sort_keys=True
|
259 |
-
)
|
260 |
-
+ "\n"
|
261 |
-
)
|
262 |
-
with open(output_chat_template_file, "w", encoding="utf-8") as writer:
|
263 |
-
writer.write(chat_template_json_string)
|
264 |
-
logger.info(f"chat template saved in {output_chat_template_file}")
|
265 |
-
|
266 |
-
print("auto_map", self.auto_map)
|
267 |
-
|
268 |
-
# For now, let's not save to `processor_config.json` if the processor doesn't have extra attributes and
|
269 |
-
# `auto_map` is not specified.
|
270 |
-
if set(processor_dict.keys()) != {"processor_class"}:
|
271 |
-
self.to_json_file(output_processor_file)
|
272 |
-
logger.info(f"processor saved in {output_processor_file}")
|
273 |
-
|
274 |
-
if push_to_hub:
|
275 |
-
self._upload_modified_files(
|
276 |
-
save_directory,
|
277 |
-
repo_id,
|
278 |
-
files_timestamps,
|
279 |
-
commit_message=commit_message,
|
280 |
-
token=kwargs.get("token"),
|
281 |
-
)
|
282 |
-
|
283 |
-
if set(processor_dict.keys()) == {"processor_class"}:
|
284 |
-
return []
|
285 |
-
return [output_processor_file]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|