Upload processor
Browse files- processor_config.json +2 -5
- processor_multi.py +283 -0
- tokenizer_1/tokenizer_config.json +2 -5
- tokenizer_2/tokenizer_config.json +2 -5
processor_config.json
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
{
|
2 |
"auto_map": {
|
3 |
-
"AutoProcessor":
|
4 |
-
"processor_multitokenizers.MultiTokenizersProcessor",
|
5 |
-
null
|
6 |
-
]
|
7 |
},
|
8 |
-
"processor_class": "
|
9 |
}
|
|
|
1 |
{
|
2 |
"auto_map": {
|
3 |
+
"AutoProcessor": "processor_multi.MultiProcessor"
|
|
|
|
|
|
|
4 |
},
|
5 |
+
"processor_class": "MultiProcessor"
|
6 |
}
|
processor_multi.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import warnings
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from transformers import (
|
11 |
+
PreTrainedTokenizer,
|
12 |
+
PreTrainedTokenizerBase,
|
13 |
+
ProcessorMixin,
|
14 |
+
BatchFeature,
|
15 |
+
)
|
16 |
+
from transformers.utils import (
|
17 |
+
logging,
|
18 |
+
direct_transformers_import,
|
19 |
+
PROCESSOR_NAME,
|
20 |
+
CHAT_TEMPLATE_NAME,
|
21 |
+
)
|
22 |
+
from transformers.image_utils import ImageInput
|
23 |
+
from transformers.dynamic_module_utils import custom_object_save
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
|
28 |
+
transformers_module = direct_transformers_import(Path(__file__).parent)
|
29 |
+
|
30 |
+
|
31 |
+
class MultiProcessorKwargs:
|
32 |
+
_defaults = {
|
33 |
+
"tokenizer_1_kwargs": {
|
34 |
+
"padding": False,
|
35 |
+
},
|
36 |
+
"tokenizer_2_kwargs": {
|
37 |
+
"padding": False,
|
38 |
+
},
|
39 |
+
}
|
40 |
+
|
41 |
+
|
42 |
+
class MultiProcessor(ProcessorMixin):
|
43 |
+
attributes = ["tokenizer_1", "tokenizer_2"]
|
44 |
+
valid_kwargs = ["chat_template"]
|
45 |
+
tokenizer_1_class = "AutoTokenizer"
|
46 |
+
tokenizer_2_class = "AutoTokenizer"
|
47 |
+
|
48 |
+
tokenizer_1: PreTrainedTokenizer
|
49 |
+
tokenizer_2: PreTrainedTokenizer
|
50 |
+
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
tokenizer_1=None,
|
54 |
+
tokenizer_2=None,
|
55 |
+
chat_template=None,
|
56 |
+
**kwargs,
|
57 |
+
):
|
58 |
+
super().__init__(
|
59 |
+
tokenizer_1,
|
60 |
+
tokenizer_2,
|
61 |
+
chat_template=chat_template,
|
62 |
+
**kwargs,
|
63 |
+
)
|
64 |
+
|
65 |
+
def __call__(
|
66 |
+
self,
|
67 |
+
text_1: str | list[str] | None = None,
|
68 |
+
text_2: str | list[str] | None = None,
|
69 |
+
**kwargs,
|
70 |
+
) -> BatchFeature:
|
71 |
+
def _validate_text_input(text) -> str | list[str]:
|
72 |
+
if isinstance(text, list):
|
73 |
+
assert all(
|
74 |
+
isinstance(t, str) for t in text
|
75 |
+
), f"Expected list of str but got {type(text)}"
|
76 |
+
assert all(len(t) > 0 for t in text), "Expected non-empty strings"
|
77 |
+
else:
|
78 |
+
assert isinstance(text, str), f"Expected str but got {type(text)}"
|
79 |
+
return text
|
80 |
+
|
81 |
+
def _normalize_text_input(text: str | list[str]) -> list[str]:
|
82 |
+
if isinstance(text, str):
|
83 |
+
return [text]
|
84 |
+
return text
|
85 |
+
|
86 |
+
_text_1: str | list[str] = _validate_text_input(text_1)
|
87 |
+
text_1_list: list[str] = _normalize_text_input(_text_1)
|
88 |
+
_text_2: str | list[str] = _validate_text_input(text_2)
|
89 |
+
text_2_list: list[str] = _normalize_text_input(_text_2)
|
90 |
+
|
91 |
+
tokenizer_1_output_kwargs = {
|
92 |
+
**MultiProcessorKwargs._defaults["tokenizer_1_kwargs"],
|
93 |
+
"return_tensors": "pt",
|
94 |
+
**kwargs,
|
95 |
+
}
|
96 |
+
tokenizer_2_output_kwargs = {
|
97 |
+
**MultiProcessorKwargs._defaults["tokenizer_2_kwargs"],
|
98 |
+
"return_tensors": "pt",
|
99 |
+
**kwargs,
|
100 |
+
}
|
101 |
+
|
102 |
+
# tokenize
|
103 |
+
text_1_inputs = self.tokenizer_1(
|
104 |
+
text_1_list,
|
105 |
+
**tokenizer_1_output_kwargs,
|
106 |
+
)
|
107 |
+
text_2_inputs = self.tokenizer_2(
|
108 |
+
text_2_list,
|
109 |
+
**tokenizer_2_output_kwargs,
|
110 |
+
)
|
111 |
+
|
112 |
+
return BatchFeature(
|
113 |
+
data={
|
114 |
+
"input_ids": text_1_inputs.get("input_ids"),
|
115 |
+
"attention_mask": text_1_inputs.get("attention_mask"),
|
116 |
+
"input_ids_2": text_2_inputs.get("input_ids"),
|
117 |
+
"attention_mask_2": text_2_inputs.get("attention_mask"),
|
118 |
+
}
|
119 |
+
)
|
120 |
+
|
121 |
+
def batch_decode(self, *args, **kwargs):
|
122 |
+
"""
|
123 |
+
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
124 |
+
refer to the docstring of this method for more information.
|
125 |
+
"""
|
126 |
+
return self.tokenizer_2_tokenizer.batch_decode(*args, **kwargs)
|
127 |
+
|
128 |
+
def decode(self, *args, **kwargs):
|
129 |
+
"""
|
130 |
+
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
131 |
+
the docstring of this method for more information.
|
132 |
+
"""
|
133 |
+
return self.tokenizer_2_tokenizer.decode(*args, **kwargs)
|
134 |
+
|
135 |
+
@property
|
136 |
+
def model_input_names(self):
|
137 |
+
return ["text_1", "text_2"]
|
138 |
+
|
139 |
+
# edit from: https://github.com/huggingface/transformers/blob/1d063793318b20654ebb850f48f43e0a247ab7bb/src/transformers/processing_utils.py#L980-L995
|
140 |
+
@classmethod
|
141 |
+
def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
142 |
+
args = []
|
143 |
+
for attribute_name in cls.attributes:
|
144 |
+
class_name = getattr(cls, f"{attribute_name}_class")
|
145 |
+
subfolder = attribute_name # subfolder is the same as attribute_name
|
146 |
+
if isinstance(class_name, tuple):
|
147 |
+
classes = tuple(
|
148 |
+
getattr(transformers_module, n) if n is not None else None
|
149 |
+
for n in class_name
|
150 |
+
)
|
151 |
+
use_fast = kwargs.get("use_fast", True)
|
152 |
+
if use_fast and classes[1] is not None:
|
153 |
+
attribute_class = classes[1]
|
154 |
+
else:
|
155 |
+
attribute_class = classes[0]
|
156 |
+
else:
|
157 |
+
attribute_class = getattr(transformers_module, class_name)
|
158 |
+
|
159 |
+
assert attribute_class is not None, f"Missing attribute class: {class_name}"
|
160 |
+
args.append(
|
161 |
+
attribute_class.from_pretrained(
|
162 |
+
pretrained_model_name_or_path,
|
163 |
+
subfolder=subfolder,
|
164 |
+
**kwargs,
|
165 |
+
)
|
166 |
+
)
|
167 |
+
return args
|
168 |
+
|
169 |
+
# edit from: https://github.com/huggingface/transformers/blob/1d063793318b20654ebb850f48f43e0a247ab7bb/src/transformers/processing_utils.py#L460-L560
|
170 |
+
def save_pretrained(self, save_directory, push_to_hub: bool = False, **kwargs):
|
171 |
+
"""
|
172 |
+
Saves the attributes of this processor (feature extractor, tokenizer...) in the specified directory so that it
|
173 |
+
can be reloaded using the [`~ProcessorMixin.from_pretrained`] method.
|
174 |
+
|
175 |
+
<Tip>
|
176 |
+
|
177 |
+
This class method is simply calling [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] and
|
178 |
+
[`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`]. Please refer to the docstrings of the
|
179 |
+
methods above for more information.
|
180 |
+
|
181 |
+
</Tip>
|
182 |
+
|
183 |
+
Args:
|
184 |
+
save_directory (`str` or `os.PathLike`):
|
185 |
+
Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will
|
186 |
+
be created if it does not exist).
|
187 |
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
188 |
+
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
189 |
+
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
190 |
+
namespace).
|
191 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
192 |
+
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
193 |
+
"""
|
194 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
195 |
+
|
196 |
+
if use_auth_token is not None:
|
197 |
+
warnings.warn(
|
198 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
199 |
+
FutureWarning,
|
200 |
+
)
|
201 |
+
if kwargs.get("token", None) is not None:
|
202 |
+
raise ValueError(
|
203 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
204 |
+
)
|
205 |
+
kwargs["token"] = use_auth_token
|
206 |
+
|
207 |
+
os.makedirs(save_directory, exist_ok=True)
|
208 |
+
|
209 |
+
if push_to_hub:
|
210 |
+
commit_message = kwargs.pop("commit_message", None)
|
211 |
+
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
212 |
+
repo_id = self._create_repo(repo_id, **kwargs)
|
213 |
+
files_timestamps = self._get_files_timestamps(save_directory)
|
214 |
+
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
|
215 |
+
# loaded from the Hub.
|
216 |
+
if self._auto_class is not None:
|
217 |
+
attrs = [
|
218 |
+
getattr(self, attribute_name) for attribute_name in self.attributes
|
219 |
+
]
|
220 |
+
configs = [
|
221 |
+
(a.init_kwargs if isinstance(a, PreTrainedTokenizerBase) else a)
|
222 |
+
for a in attrs
|
223 |
+
]
|
224 |
+
configs.append(self)
|
225 |
+
custom_object_save(self, save_directory, config=configs)
|
226 |
+
|
227 |
+
for attribute_name in self.attributes:
|
228 |
+
attribute = getattr(self, attribute_name)
|
229 |
+
# Include the processor class in the attribute config so this processor can then be reloaded with the
|
230 |
+
# `AutoProcessor` API.
|
231 |
+
if hasattr(attribute, "_set_processor_class"):
|
232 |
+
attribute._set_processor_class(self.__class__.__name__)
|
233 |
+
attribute.save_pretrained(
|
234 |
+
os.path.join(
|
235 |
+
save_directory,
|
236 |
+
attribute_name, # CHANGED: save to subfolder
|
237 |
+
),
|
238 |
+
)
|
239 |
+
|
240 |
+
if self._auto_class is not None:
|
241 |
+
# We added an attribute to the init_kwargs of the tokenizers, which needs to be cleaned up.
|
242 |
+
for attribute_name in self.attributes:
|
243 |
+
attribute = getattr(self, attribute_name)
|
244 |
+
if isinstance(attribute, PreTrainedTokenizerBase):
|
245 |
+
del attribute.init_kwargs["auto_map"]
|
246 |
+
|
247 |
+
# If we save using the predefined names, we can load using `from_pretrained`
|
248 |
+
# plus we save chat_template in its own file
|
249 |
+
output_processor_file = os.path.join(save_directory, PROCESSOR_NAME)
|
250 |
+
output_chat_template_file = os.path.join(save_directory, CHAT_TEMPLATE_NAME)
|
251 |
+
|
252 |
+
processor_dict = self.to_dict()
|
253 |
+
# Save `chat_template` in its own file. We can't get it from `processor_dict` as we popped it in `to_dict`
|
254 |
+
# to avoid serializing chat template in json config file. So let's get it from `self` directly
|
255 |
+
if self.chat_template is not None:
|
256 |
+
chat_template_json_string = (
|
257 |
+
json.dumps(
|
258 |
+
{"chat_template": self.chat_template}, indent=2, sort_keys=True
|
259 |
+
)
|
260 |
+
+ "\n"
|
261 |
+
)
|
262 |
+
with open(output_chat_template_file, "w", encoding="utf-8") as writer:
|
263 |
+
writer.write(chat_template_json_string)
|
264 |
+
logger.info(f"chat template saved in {output_chat_template_file}")
|
265 |
+
|
266 |
+
# For now, let's not save to `processor_config.json` if the processor doesn't have extra attributes and
|
267 |
+
# `auto_map` is not specified.
|
268 |
+
if set(processor_dict.keys()) != {"processor_class"}:
|
269 |
+
self.to_json_file(output_processor_file)
|
270 |
+
logger.info(f"processor saved in {output_processor_file}")
|
271 |
+
|
272 |
+
if push_to_hub:
|
273 |
+
self._upload_modified_files(
|
274 |
+
save_directory,
|
275 |
+
repo_id,
|
276 |
+
files_timestamps,
|
277 |
+
commit_message=commit_message,
|
278 |
+
token=kwargs.get("token"),
|
279 |
+
)
|
280 |
+
|
281 |
+
if set(processor_dict.keys()) == {"processor_class"}:
|
282 |
+
return []
|
283 |
+
return [output_processor_file]
|
tokenizer_1/tokenizer_config.json
CHANGED
@@ -68,10 +68,7 @@
|
|
68 |
}
|
69 |
},
|
70 |
"auto_map": {
|
71 |
-
"AutoProcessor":
|
72 |
-
"processor_multitokenizers.MultiTokenizersProcessor",
|
73 |
-
null
|
74 |
-
]
|
75 |
},
|
76 |
"bos_token": "<s>",
|
77 |
"clean_up_tokenization_spaces": false,
|
@@ -82,7 +79,7 @@
|
|
82 |
"mask_token": "<MASK|LLM-jp>",
|
83 |
"model_max_length": 1000000000000000019884624838656,
|
84 |
"pad_token": "<PAD|LLM-jp>",
|
85 |
-
"processor_class": "
|
86 |
"sep_token": "<SEP|LLM-jp>",
|
87 |
"sp_model_kwargs": {},
|
88 |
"tokenizer_class": "PreTrainedTokenizerFast",
|
|
|
68 |
}
|
69 |
},
|
70 |
"auto_map": {
|
71 |
+
"AutoProcessor": "processor_multi.MultiProcessor"
|
|
|
|
|
|
|
72 |
},
|
73 |
"bos_token": "<s>",
|
74 |
"clean_up_tokenization_spaces": false,
|
|
|
79 |
"mask_token": "<MASK|LLM-jp>",
|
80 |
"model_max_length": 1000000000000000019884624838656,
|
81 |
"pad_token": "<PAD|LLM-jp>",
|
82 |
+
"processor_class": "MultiProcessor",
|
83 |
"sep_token": "<SEP|LLM-jp>",
|
84 |
"sp_model_kwargs": {},
|
85 |
"tokenizer_class": "PreTrainedTokenizerFast",
|
tokenizer_2/tokenizer_config.json
CHANGED
@@ -195,10 +195,7 @@
|
|
195 |
"<|video_pad|>"
|
196 |
],
|
197 |
"auto_map": {
|
198 |
-
"AutoProcessor":
|
199 |
-
"processor_multitokenizers.MultiTokenizersProcessor",
|
200 |
-
null
|
201 |
-
]
|
202 |
},
|
203 |
"bos_token": null,
|
204 |
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
@@ -207,7 +204,7 @@
|
|
207 |
"errors": "replace",
|
208 |
"model_max_length": 32768,
|
209 |
"pad_token": "<|endoftext|>",
|
210 |
-
"processor_class": "
|
211 |
"split_special_tokens": false,
|
212 |
"tokenizer_class": "Qwen2Tokenizer",
|
213 |
"unk_token": null
|
|
|
195 |
"<|video_pad|>"
|
196 |
],
|
197 |
"auto_map": {
|
198 |
+
"AutoProcessor": "processor_multi.MultiProcessor"
|
|
|
|
|
|
|
199 |
},
|
200 |
"bos_token": null,
|
201 |
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
|
|
204 |
"errors": "replace",
|
205 |
"model_max_length": 32768,
|
206 |
"pad_token": "<|endoftext|>",
|
207 |
+
"processor_class": "MultiProcessor",
|
208 |
"split_special_tokens": false,
|
209 |
"tokenizer_class": "Qwen2Tokenizer",
|
210 |
"unk_token": null
|