File size: 11,211 Bytes
3b5d4a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import os
import json
import warnings
from pathlib import Path
import torch
import torch.nn as nn
from transformers import (
PreTrainedTokenizer,
PreTrainedTokenizerBase,
ProcessorMixin,
BatchFeature,
)
from transformers.utils import (
logging,
direct_transformers_import,
PROCESSOR_NAME,
CHAT_TEMPLATE_NAME,
)
from transformers.image_utils import ImageInput
from transformers.dynamic_module_utils import custom_object_save
logger = logging.get_logger(__name__)
# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
transformers_module = direct_transformers_import(Path(__file__).parent)
class MultiProcessorKwargs:
_defaults = {
"tokenizer_1_kwargs": {
"padding": False,
},
"tokenizer_2_kwargs": {
"padding": False,
},
}
class MultiProcessor(ProcessorMixin):
attributes = ["tokenizer_1", "tokenizer_2"]
valid_kwargs = ["chat_template"]
tokenizer_1_class = "AutoTokenizer"
tokenizer_2_class = "AutoTokenizer"
tokenizer_1: PreTrainedTokenizer
tokenizer_2: PreTrainedTokenizer
def __init__(
self,
tokenizer_1=None,
tokenizer_2=None,
chat_template=None,
**kwargs,
):
super().__init__(
tokenizer_1,
tokenizer_2,
chat_template=chat_template,
**kwargs,
)
def __call__(
self,
text_1: str | list[str] | None = None,
text_2: str | list[str] | None = None,
**kwargs,
) -> BatchFeature:
def _validate_text_input(text) -> str | list[str]:
if isinstance(text, list):
assert all(
isinstance(t, str) for t in text
), f"Expected list of str but got {type(text)}"
assert all(len(t) > 0 for t in text), "Expected non-empty strings"
else:
assert isinstance(text, str), f"Expected str but got {type(text)}"
return text
def _normalize_text_input(text: str | list[str]) -> list[str]:
if isinstance(text, str):
return [text]
return text
_text_1: str | list[str] = _validate_text_input(text_1)
text_1_list: list[str] = _normalize_text_input(_text_1)
_text_2: str | list[str] = _validate_text_input(text_2)
text_2_list: list[str] = _normalize_text_input(_text_2)
tokenizer_1_output_kwargs = {
**MultiProcessorKwargs._defaults["tokenizer_1_kwargs"],
"return_tensors": "pt",
**kwargs,
}
tokenizer_2_output_kwargs = {
**MultiProcessorKwargs._defaults["tokenizer_2_kwargs"],
"return_tensors": "pt",
**kwargs,
}
# tokenize
text_1_inputs = self.tokenizer_1(
text_1_list,
**tokenizer_1_output_kwargs,
)
text_2_inputs = self.tokenizer_2(
text_2_list,
**tokenizer_2_output_kwargs,
)
return BatchFeature(
data={
"input_ids": text_1_inputs.get("input_ids"),
"attention_mask": text_1_inputs.get("attention_mask"),
"input_ids_2": text_2_inputs.get("input_ids"),
"attention_mask_2": text_2_inputs.get("attention_mask"),
}
)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer_2_tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer_2_tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
return ["text_1", "text_2"]
# edit from: https://github.com/huggingface/transformers/blob/1d063793318b20654ebb850f48f43e0a247ab7bb/src/transformers/processing_utils.py#L980-L995
@classmethod
def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
args = []
for attribute_name in cls.attributes:
class_name = getattr(cls, f"{attribute_name}_class")
subfolder = attribute_name # subfolder is the same as attribute_name
if isinstance(class_name, tuple):
classes = tuple(
getattr(transformers_module, n) if n is not None else None
for n in class_name
)
use_fast = kwargs.get("use_fast", True)
if use_fast and classes[1] is not None:
attribute_class = classes[1]
else:
attribute_class = classes[0]
else:
attribute_class = getattr(transformers_module, class_name)
assert attribute_class is not None, f"Missing attribute class: {class_name}"
args.append(
attribute_class.from_pretrained(
pretrained_model_name_or_path,
subfolder=subfolder,
**kwargs,
)
)
return args
# edit from: https://github.com/huggingface/transformers/blob/1d063793318b20654ebb850f48f43e0a247ab7bb/src/transformers/processing_utils.py#L460-L560
def save_pretrained(self, save_directory, push_to_hub: bool = False, **kwargs):
"""
Saves the attributes of this processor (feature extractor, tokenizer...) in the specified directory so that it
can be reloaded using the [`~ProcessorMixin.from_pretrained`] method.
<Tip>
This class method is simply calling [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] and
[`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`]. Please refer to the docstrings of the
methods above for more information.
</Tip>
Args:
save_directory (`str` or `os.PathLike`):
Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will
be created if it does not exist).
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs (`Dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if kwargs.get("token", None) is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
kwargs["token"] = use_auth_token
os.makedirs(save_directory, exist_ok=True)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = self._create_repo(repo_id, **kwargs)
files_timestamps = self._get_files_timestamps(save_directory)
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
# loaded from the Hub.
if self._auto_class is not None:
attrs = [
getattr(self, attribute_name) for attribute_name in self.attributes
]
configs = [
(a.init_kwargs if isinstance(a, PreTrainedTokenizerBase) else a)
for a in attrs
]
configs.append(self)
custom_object_save(self, save_directory, config=configs)
for attribute_name in self.attributes:
attribute = getattr(self, attribute_name)
# Include the processor class in the attribute config so this processor can then be reloaded with the
# `AutoProcessor` API.
if hasattr(attribute, "_set_processor_class"):
attribute._set_processor_class(self.__class__.__name__)
attribute.save_pretrained(
os.path.join(
save_directory,
attribute_name, # CHANGED: save to subfolder
),
)
if self._auto_class is not None:
# We added an attribute to the init_kwargs of the tokenizers, which needs to be cleaned up.
for attribute_name in self.attributes:
attribute = getattr(self, attribute_name)
if isinstance(attribute, PreTrainedTokenizerBase):
del attribute.init_kwargs["auto_map"]
# If we save using the predefined names, we can load using `from_pretrained`
# plus we save chat_template in its own file
output_processor_file = os.path.join(save_directory, PROCESSOR_NAME)
output_chat_template_file = os.path.join(save_directory, CHAT_TEMPLATE_NAME)
processor_dict = self.to_dict()
# Save `chat_template` in its own file. We can't get it from `processor_dict` as we popped it in `to_dict`
# to avoid serializing chat template in json config file. So let's get it from `self` directly
if self.chat_template is not None:
chat_template_json_string = (
json.dumps(
{"chat_template": self.chat_template}, indent=2, sort_keys=True
)
+ "\n"
)
with open(output_chat_template_file, "w", encoding="utf-8") as writer:
writer.write(chat_template_json_string)
logger.info(f"chat template saved in {output_chat_template_file}")
# For now, let's not save to `processor_config.json` if the processor doesn't have extra attributes and
# `auto_map` is not specified.
if set(processor_dict.keys()) != {"processor_class"}:
self.to_json_file(output_processor_file)
logger.info(f"processor saved in {output_processor_file}")
if push_to_hub:
self._upload_modified_files(
save_directory,
repo_id,
files_timestamps,
commit_message=commit_message,
token=kwargs.get("token"),
)
if set(processor_dict.keys()) == {"processor_class"}:
return []
return [output_processor_file]
|