p0x0q commited on
Commit
a24ac3a
·
1 Parent(s): 5760b3d

Revert "カスタムハンドラではなく、デフォルトでスパースに対応する"

Browse files

This reverts commit 79e008e5730d9501b9a0c1fd955bfd6e8e5b0776.

Files changed (1) hide show
  1. handler.py +61 -0
handler.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+ # from optimum.onnxruntime import ORTModelForSequenceClassification
3
+ # from transformers import pipeline, AutoTokenizer
4
+ from FlagEmbedding import BGEM3FlagModel
5
+ import time
6
+
7
+ class EndpointHandler():
8
+ def __init__(self, path="."):
9
+ # load the optimized model
10
+ # モデルの準備
11
+ self.model = BGEM3FlagModel(path, use_fp16=True)
12
+
13
+
14
+ def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
15
+ """
16
+ Args:
17
+ data (:obj:):
18
+ includes the input data and the parameters for the inference.
19
+ Return:
20
+ A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
21
+ - "label": A string representing what the label/class is. There can be multiple labels.
22
+ - "score": A score between 0 and 1 describing how confident the model is for this label/class.
23
+ """
24
+ inputs = data.pop("inputs", data)
25
+ parameters = data.pop("parameters", None)
26
+
27
+ # encodeメソッドの実行前に時間を記録
28
+ start_time = time.time()
29
+
30
+ result = self.model.encode(inputs, return_dense=False, return_sparse=True, max_length=1024)
31
+
32
+ # encodeメソッドの実行後に時間を記録
33
+ end_time = time.time()
34
+ # print(result)
35
+ # dense_vectors = result["dense_vecs"]
36
+
37
+ # 経過時間を計算
38
+ elapsed_time = end_time - start_time
39
+ print(f"Encoding took {elapsed_time:.4f} seconds")
40
+
41
+ sparse_vectors = result["lexical_weights"]
42
+ # defaultdict(<class 'int'>, {'6': 0.09546, '192661': 0.3323})
43
+
44
+ # pass inputs with all kwargs in data
45
+ # if parameters is not None:
46
+ # prediction = self.pipeline(inputs, **parameters)
47
+ # else:
48
+ # prediction = self.pipeline(inputs)
49
+ # postprocess the prediction
50
+
51
+ # レスポンスをの型をkey=str, value=floatのdictにする。なお、numpy.float16はjsonに変換できないので、floatに変換する。
52
+ sparse_vectors = {str(k): float(v) for k, v in sparse_vectors.items()}
53
+
54
+ # レスポンスの型をnumpy.ndarrayから、通常のarrayに変更する
55
+ # dense_vectors = dense_vectors.tolist()
56
+
57
+ return [
58
+ [
59
+ { "outputs": sparse_vectors}
60
+ ]
61
+ ]