Revert "カスタムハンドラではなく、デフォルトでスパースに対応する"
Browse filesThis reverts commit 79e008e5730d9501b9a0c1fd955bfd6e8e5b0776.
- handler.py +61 -0
handler.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
# from optimum.onnxruntime import ORTModelForSequenceClassification
|
3 |
+
# from transformers import pipeline, AutoTokenizer
|
4 |
+
from FlagEmbedding import BGEM3FlagModel
|
5 |
+
import time
|
6 |
+
|
7 |
+
class EndpointHandler():
|
8 |
+
def __init__(self, path="."):
|
9 |
+
# load the optimized model
|
10 |
+
# モデルの準備
|
11 |
+
self.model = BGEM3FlagModel(path, use_fp16=True)
|
12 |
+
|
13 |
+
|
14 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
15 |
+
"""
|
16 |
+
Args:
|
17 |
+
data (:obj:):
|
18 |
+
includes the input data and the parameters for the inference.
|
19 |
+
Return:
|
20 |
+
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
|
21 |
+
- "label": A string representing what the label/class is. There can be multiple labels.
|
22 |
+
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
|
23 |
+
"""
|
24 |
+
inputs = data.pop("inputs", data)
|
25 |
+
parameters = data.pop("parameters", None)
|
26 |
+
|
27 |
+
# encodeメソッドの実行前に時間を記録
|
28 |
+
start_time = time.time()
|
29 |
+
|
30 |
+
result = self.model.encode(inputs, return_dense=False, return_sparse=True, max_length=1024)
|
31 |
+
|
32 |
+
# encodeメソッドの実行後に時間を記録
|
33 |
+
end_time = time.time()
|
34 |
+
# print(result)
|
35 |
+
# dense_vectors = result["dense_vecs"]
|
36 |
+
|
37 |
+
# 経過時間を計算
|
38 |
+
elapsed_time = end_time - start_time
|
39 |
+
print(f"Encoding took {elapsed_time:.4f} seconds")
|
40 |
+
|
41 |
+
sparse_vectors = result["lexical_weights"]
|
42 |
+
# defaultdict(<class 'int'>, {'6': 0.09546, '192661': 0.3323})
|
43 |
+
|
44 |
+
# pass inputs with all kwargs in data
|
45 |
+
# if parameters is not None:
|
46 |
+
# prediction = self.pipeline(inputs, **parameters)
|
47 |
+
# else:
|
48 |
+
# prediction = self.pipeline(inputs)
|
49 |
+
# postprocess the prediction
|
50 |
+
|
51 |
+
# レスポンスをの型をkey=str, value=floatのdictにする。なお、numpy.float16はjsonに変換できないので、floatに変換する。
|
52 |
+
sparse_vectors = {str(k): float(v) for k, v in sparse_vectors.items()}
|
53 |
+
|
54 |
+
# レスポンスの型をnumpy.ndarrayから、通常のarrayに変更する
|
55 |
+
# dense_vectors = dense_vectors.tolist()
|
56 |
+
|
57 |
+
return [
|
58 |
+
[
|
59 |
+
{ "outputs": sparse_vectors}
|
60 |
+
]
|
61 |
+
]
|