カスタムハンドラではなく、デフォルトでスパースに対応する
Browse files- handler.py +0 -61
handler.py
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
from typing import Dict, List, Any
|
2 |
-
# from optimum.onnxruntime import ORTModelForSequenceClassification
|
3 |
-
# from transformers import pipeline, AutoTokenizer
|
4 |
-
from FlagEmbedding import BGEM3FlagModel
|
5 |
-
import time
|
6 |
-
|
7 |
-
class EndpointHandler():
|
8 |
-
def __init__(self, path="."):
|
9 |
-
# load the optimized model
|
10 |
-
# モデルの準備
|
11 |
-
self.model = BGEM3FlagModel(path, use_fp16=True)
|
12 |
-
|
13 |
-
|
14 |
-
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
15 |
-
"""
|
16 |
-
Args:
|
17 |
-
data (:obj:):
|
18 |
-
includes the input data and the parameters for the inference.
|
19 |
-
Return:
|
20 |
-
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
|
21 |
-
- "label": A string representing what the label/class is. There can be multiple labels.
|
22 |
-
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
|
23 |
-
"""
|
24 |
-
inputs = data.pop("inputs", data)
|
25 |
-
parameters = data.pop("parameters", None)
|
26 |
-
|
27 |
-
# encodeメソッドの実行前に時間を記録
|
28 |
-
start_time = time.time()
|
29 |
-
|
30 |
-
result = self.model.encode(inputs, return_dense=False, return_sparse=True, max_length=1024)
|
31 |
-
|
32 |
-
# encodeメソッドの実行後に時間を記録
|
33 |
-
end_time = time.time()
|
34 |
-
# print(result)
|
35 |
-
# dense_vectors = result["dense_vecs"]
|
36 |
-
|
37 |
-
# 経過時間を計算
|
38 |
-
elapsed_time = end_time - start_time
|
39 |
-
print(f"Encoding took {elapsed_time:.4f} seconds")
|
40 |
-
|
41 |
-
sparse_vectors = result["lexical_weights"]
|
42 |
-
# defaultdict(<class 'int'>, {'6': 0.09546, '192661': 0.3323})
|
43 |
-
|
44 |
-
# pass inputs with all kwargs in data
|
45 |
-
# if parameters is not None:
|
46 |
-
# prediction = self.pipeline(inputs, **parameters)
|
47 |
-
# else:
|
48 |
-
# prediction = self.pipeline(inputs)
|
49 |
-
# postprocess the prediction
|
50 |
-
|
51 |
-
# レスポンスをの型をkey=str, value=floatのdictにする。なお、numpy.float16はjsonに変換できないので、floatに変換する。
|
52 |
-
sparse_vectors = {str(k): float(v) for k, v in sparse_vectors.items()}
|
53 |
-
|
54 |
-
# レスポンスの型をnumpy.ndarrayから、通常のarrayに変更する
|
55 |
-
# dense_vectors = dense_vectors.tolist()
|
56 |
-
|
57 |
-
return [
|
58 |
-
[
|
59 |
-
{ "outputs": sparse_vectors}
|
60 |
-
]
|
61 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|