p0x0q commited on
Commit
79e008e
·
1 Parent(s): 4d88031

カスタムハンドラではなく、デフォルトでスパースに対応する

Browse files
Files changed (1) hide show
  1. handler.py +0 -61
handler.py DELETED
@@ -1,61 +0,0 @@
1
- from typing import Dict, List, Any
2
- # from optimum.onnxruntime import ORTModelForSequenceClassification
3
- # from transformers import pipeline, AutoTokenizer
4
- from FlagEmbedding import BGEM3FlagModel
5
- import time
6
-
7
- class EndpointHandler():
8
- def __init__(self, path="."):
9
- # load the optimized model
10
- # モデルの準備
11
- self.model = BGEM3FlagModel(path, use_fp16=True)
12
-
13
-
14
- def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
15
- """
16
- Args:
17
- data (:obj:):
18
- includes the input data and the parameters for the inference.
19
- Return:
20
- A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
21
- - "label": A string representing what the label/class is. There can be multiple labels.
22
- - "score": A score between 0 and 1 describing how confident the model is for this label/class.
23
- """
24
- inputs = data.pop("inputs", data)
25
- parameters = data.pop("parameters", None)
26
-
27
- # encodeメソッドの実行前に時間を記録
28
- start_time = time.time()
29
-
30
- result = self.model.encode(inputs, return_dense=False, return_sparse=True, max_length=1024)
31
-
32
- # encodeメソッドの実行後に時間を記録
33
- end_time = time.time()
34
- # print(result)
35
- # dense_vectors = result["dense_vecs"]
36
-
37
- # 経過時間を計算
38
- elapsed_time = end_time - start_time
39
- print(f"Encoding took {elapsed_time:.4f} seconds")
40
-
41
- sparse_vectors = result["lexical_weights"]
42
- # defaultdict(<class 'int'>, {'6': 0.09546, '192661': 0.3323})
43
-
44
- # pass inputs with all kwargs in data
45
- # if parameters is not None:
46
- # prediction = self.pipeline(inputs, **parameters)
47
- # else:
48
- # prediction = self.pipeline(inputs)
49
- # postprocess the prediction
50
-
51
- # レスポンスをの型をkey=str, value=floatのdictにする。なお、numpy.float16はjsonに変換できないので、floatに変換する。
52
- sparse_vectors = {str(k): float(v) for k, v in sparse_vectors.items()}
53
-
54
- # レスポンスの型をnumpy.ndarrayから、通常のarrayに変更する
55
- # dense_vectors = dense_vectors.tolist()
56
-
57
- return [
58
- [
59
- { "outputs": sparse_vectors}
60
- ]
61
- ]