|
from typing import Dict, List, Any |
|
|
|
|
|
from FlagEmbedding import BGEM3FlagModel |
|
import time |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path="."): |
|
|
|
|
|
self.model = BGEM3FlagModel(path, use_fp16=True) |
|
|
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : |
|
- "label": A string representing what the label/class is. There can be multiple labels. |
|
- "score": A score between 0 and 1 describing how confident the model is for this label/class. |
|
""" |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
|
|
start_time = time.time() |
|
|
|
result = self.model.encode(inputs, return_dense=False, return_sparse=True, max_length=1024) |
|
|
|
|
|
end_time = time.time() |
|
|
|
|
|
|
|
|
|
elapsed_time = end_time - start_time |
|
print(f"Encoding took {elapsed_time:.4f} seconds") |
|
|
|
sparse_vectors = result["lexical_weights"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sparse_vectors = {str(k): float(v) for k, v in sparse_vectors.items()} |
|
|
|
|
|
|
|
|
|
return [ |
|
[ |
|
{ "outputs": sparse_vectors} |
|
] |
|
] |
|
|