|
--- |
|
library_name: transformers |
|
datasets: |
|
- lmsys/lmsys-chat-1m |
|
base_model: |
|
- Qwen/Qwen2.5-14B-Instruct |
|
pipeline_tag: text-generation |
|
language: |
|
- en |
|
- zh |
|
license: apache-2.0 |
|
--- |
|
|
|
# 0x Lite |
|
|
|
## We'd like to give a special thanks to ShuttleAI for making this possible. |
|
|
|
## Join our Discord: https://discord.gg/J9AEasuK5e |
|
|
|
## Overview |
|
0x Lite is a state-of-the-art language model developed by Ozone AI, designed to deliver ultra-high-quality text generation capabilities while maintaining a compact and efficient architecture. Built on the latest advancements in natural language processing, 0x Lite is optimized for both speed and accuracy, making it a strong contender in the space of language models. It is particularly well-suited for applications where resource constraints are a concern, offering a lightweight alternative to larger models like GPT while still delivering comparable performance. |
|
|
|
## Features |
|
- **Compact and Efficient**: 0x Lite is designed to be lightweight, making it suitable for deployment on resource-constrained devices. |
|
- **High-Quality Text Generation**: The model is trained on a diverse dataset to generate coherent, contextually relevant, and human-like text. |
|
- **Versatile Applications**: Suitable for tasks such as text completion, summarization, translation, and more. |
|
- **Fast Inference**: Optimized for speed, ensuring quick and efficient responses. |
|
- **Open-Source and Community-Driven**: Built with transparency and collaboration in mind, 0x Lite is available for the community to use, modify, and improve. |
|
|
|
## Use Cases |
|
- **Text Completion**: Assist users with writing tasks by generating coherent and contextually appropriate text. |
|
- **Summarization**: Summarize long documents into concise and meaningful summaries. |
|
- **Chatbots**: Power conversational AI systems with 0x Lite. |
|
- **Content Creation**: Generate creative content such as stories, poems, or marketing copy. |
|
- **Education**: Assist students with research, essay writing, and language learning. |
|
|
|
## Getting Started |
|
To get started with 0x Lite, follow these steps: |
|
|
|
1. **Install the Model**: |
|
```bash |
|
pip install transformers |
|
``` |
|
|
|
2. **Load the Model**: |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "ozone-ai/0x-lite" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
``` |
|
|
|
3. **Generate Text**: |
|
```python |
|
input_text = "Once upon a time" |
|
inputs = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
outputs = model.generate(**inputs, max_length=50) |
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(generated_text) |
|
``` |
|
|
|
# Chinese |
|
|
|
# 0x Lite |
|
|
|
## 概览 |
|
0x Lite 是由 Ozone AI 开发的最先进的语言模型,旨在提供超高质量的文本生成能力,同时保持紧凑和高效的架构。基于自然语言处理领域的最新进展, |
|
0x Lite 在速度和准确性方面都进行了优化,在语言模型领域中是一个强有力的竞争者。它特别适合资源受限的应用场景,为那些希望获得与 GPT 等大型模 |
|
型相当性能但又需要轻量级解决方案的用户提供了一个理想选择。 |
|
|
|
## 特性 |
|
- **紧凑高效**:0x Lite 被设计成轻量化,适用于资源受限设备上的部署。 |
|
- **高质量文本生成**:该模型经过多样化的数据集训练,能够生成连贯、上下文相关且接近人类水平的文本。 |
|
- **多用途应用**:适合完成如文本补全、摘要、翻译等任务。 |
|
- **快速推理**:优化了速度,确保迅速高效的响应。 |
|
- **开源及社区驱动**:秉持透明和协作的理念,0x Lite 向社区开放,供用户使用、修改和完善。 |
|
|
|
## 应用场景 |
|
- **文本补全**:通过生成连贯且上下文相关的文本帮助用户完成写作任务。 |
|
- **摘要**:将长文档总结为简短而有意义的摘要。 |
|
- **聊天机器人**:利用 0x Lite 动力支持会话式 AI 系统。 |
|
- **内容创作**:生成创意性内容,如故事、诗歌或营销文案。 |
|
- **教育**:协助学生进行研究、写作及语言学习。 |
|
|
|
## 入门指南 |
|
要开始使用 0x Lite,请按照以下步骤操作: |
|
|
|
1. **安装模型**: |
|
```bash |
|
pip install transformers |
|
``` |
|
|
|
2. **加载模型**: |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "ozone-ai/0x-lite" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
``` |
|
|
|
3. **生成文本**: |
|
```python |
|
input_text = "从前有一段时间" |
|
inputs = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
outputs = model.generate(**inputs, max_length=50) |
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(generated_text) |
|
``` |
|
|
|
--- |
|
|
|
Translated by 0x-Lite |