Tr-Jp-LLM-1.5B-v2
This model is a fine-tuned version of SakanaAI/TinySwallow-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.0040
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 1024
- optimizer: Use adamw_torch with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.9792 | 0.0492 | 500 | 3.6054 |
3.2678 | 0.0984 | 1000 | 3.0956 |
3.0036 | 0.1476 | 1500 | 3.0268 |
2.9727 | 0.1969 | 2000 | 3.0121 |
2.9638 | 0.2461 | 2500 | 3.0066 |
2.9605 | 0.2953 | 3000 | 3.0047 |
2.9584 | 0.3445 | 3500 | 3.0037 |
2.96 | 0.3937 | 4000 | 3.0041 |
2.9592 | 0.4429 | 4500 | 3.0040 |
2.9601 | 0.4921 | 5000 | 3.0040 |
2.9589 | 0.5414 | 5500 | 3.0039 |
2.96 | 0.5906 | 6000 | 3.0040 |
2.9584 | 0.6398 | 6500 | 3.0040 |
2.9609 | 0.6890 | 7000 | 3.0040 |
2.958 | 0.7382 | 7500 | 3.0039 |
2.9564 | 0.7874 | 8000 | 3.0040 |
2.9584 | 0.8366 | 8500 | 3.0039 |
2.9571 | 0.8859 | 9000 | 3.0039 |
2.9596 | 0.9351 | 9500 | 3.0039 |
2.9581 | 0.9843 | 10000 | 3.0040 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu126
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 15
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for oriental-lab/Tr-Jp-LLM-1.5B-v2
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-1.5B-Instruct
Finetuned
SakanaAI/TinySwallow-1.5B-Instruct