Massive Text Embedding Benchmark

non-profit
Activity Feed

AI & ML interests

Massive Text Embeddings Benchmark

Recent Activity

Muennighoff  updated a dataset 8 minutes ago
mteb/arena-results
AdnanElAssadi  updated a dataset about 2 hours ago
mteb/BIRCO-Relic-Test
AdnanElAssadi  published a dataset about 2 hours ago
mteb/BIRCO-Relic-Test
View all activity

mteb's activity

mmhamdy 
posted an update about 19 hours ago
view post
Post
1475
⛓ Evaluating Long Context #2: SCROLLS and ZeroSCROLLS

In this series of posts about tracing the history of long context evaluation, we started with Long Range Arena (LRA). Introduced in 2020, Long Range Arens (LRA) is one of the earliest benchmarks designed to tackle the challenge of long context evaluation. But it wasn't introduced to evaluate LLMs, but rather the transformer architecture in general.

📜 The SCROLLS benchmark, introduced in 2022, addresses this gap in NLP/LLM research. SCROLLS challenges models with tasks that require reasoning over extended sequences (according to 2022 standards). So, what does it offer?

1️⃣ Long Text Focus: SCROLLS (unlike LRA) focus mainly on text and contain inputs with thousands of words, testing models' ability to synthesize information across lengthy documents.
2️⃣ Diverse Tasks: Includes summarization, question answering, and natural language inference across domains like literature, science, and business.
3️⃣ Unified Format: All datasets are available in a text-to-text format, facilitating easy evaluation and comparison of models.

Building on SCROLLS, ZeroSCROLLS takes long text evaluation to the next level by focusing on zero-shot learning. Other features include:

1️⃣ New Tasks: Introduces tasks like sentiment aggregation and sorting book chapter summaries.
2️⃣ Leaderboard: A live leaderboard encourages continuous improvement and competition among researchers.

💡 What are some other landmark benchmarks in the history of long context evaluation? Feel free to share your thoughts and suggestions in the comments.

- SCROLLS Paper: SCROLLS: Standardized CompaRison Over Long Language Sequences (2201.03533)
- ZeroSCROLLS Paper: ZeroSCROLLS: A Zero-Shot Benchmark for Long Text Understanding (2305.14196)
tomaarsen 
posted an update 19 days ago
view post
Post
1754
I just released Sentence Transformers v3.4.0, featuring a memory leak fix, compatibility between the powerful Cached... losses and the Matryoshka loss modifier, and a bunch of fixes & small features.

🪆 Matryoshka & Cached loss compatibility
It is now possible to combine the powerful Cached... losses (which use in-batch negatives & a caching mechanism to allow for endless batch size & negatives) with the Matryoshka loss modifier which modifies a base loss such that it is trained not only on the maximum dimensionality (e.g. 1024 dimensions), but also on many lower dimensions (e.g. 768, 512, 256, 128, 64, 32).
After training, these models' embeddings can be truncated for faster retrieval, etc.

🎞️ Resolve memory leak when Model and Trainer are reinitialized
Due to a circular dependency between Trainer -> Model -> ModelCardData -> Trainer, deleting both the trainer & model still didn't free up the memory.
This led to a memory leak in scripts where you repeatedly do so.

➕ New Features
Many new small features, e.g. multi-GPU support for 'mine_hard_negatives', a 'margin' parameter to TripletEvaluator, and Matthews Correlation Coefficient in the BinaryClassificationEvaluator.

🐛 Bug Fixes
Also a bunch of fixes, for example that subsequent batches were not sorted when using the "no_duplicates" batch sampler. See the release notes for more details.

Full release notes: https://github.com/UKPLab/sentence-transformers/releases/tag/v3.4.0

Big thanks to all community members who assisted in this release. 10 folks with their first contribution this time around!