oraul's picture
End of training
804efea
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- doc_lay_net-small
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Layoutlmv3-finetuned-DocLayNet-test
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: doc_lay_net-small
type: doc_lay_net-small
config: DocLayNet_2022.08_processed_on_2023.01
split: test
args: DocLayNet_2022.08_processed_on_2023.01
metrics:
- name: Precision
type: precision
value: 0.580814717477004
- name: Recall
type: recall
value: 0.6415094339622641
- name: F1
type: f1
value: 0.6096551724137931
- name: Accuracy
type: accuracy
value: 0.867559907240402
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Layoutlmv3-finetuned-DocLayNet-test
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the doc_lay_net-small dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5326
- Precision: 0.5808
- Recall: 0.6415
- F1: 0.6097
- Accuracy: 0.8676
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.499 | 0.37 | 250 | 0.7771 | 0.2079 | 0.2848 | 0.2403 | 0.8189 |
| 0.8163 | 0.73 | 500 | 0.5990 | 0.3611 | 0.5633 | 0.4400 | 0.8454 |
| 0.5933 | 1.1 | 750 | 0.6424 | 0.5527 | 0.6139 | 0.5817 | 0.8182 |
| 0.3731 | 1.46 | 1000 | 0.7426 | 0.5923 | 0.6804 | 0.6333 | 0.8282 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0