oracat's picture
update model card README.md
862abb7
|
raw
history blame
1.52 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert-paper-classifier
    results: []

bert-paper-classifier

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8059
  • Accuracy: 0.586

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8012 1.0 16 1.8824 0.584
1.4111 2.0 32 1.8159 0.568
1.3755 3.0 48 1.8059 0.586

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.3