|
--- |
|
language: en |
|
license: apache-2.0 |
|
tags: |
|
- learned sparse |
|
- opensearch |
|
- transformers |
|
- retrieval |
|
--- |
|
|
|
# opensearch-neural-sparse-encoding-v1 |
|
This is a learned sparse retrieval model. It encodes the documents to 30522 dimensional **sparse vectors**. For queries, it just use a tokenizer and a weight look-up table to generate sparse vectors. The non-zero dimension index means the corresponding token in the vocabulary, and the weight means the importance of the token. And the similarity score is the inner product of query/document sparse vectors. In the real-world use case, the search performance of opensearch-neural-sparse-encoding-v1 is comparable to BM25. |
|
|
|
|
|
OpenSearch neural sparse feature supports learned sparse retrieval with lucene inverted index. Link: https://opensearch.org/docs/latest/query-dsl/specialized/neural-sparse/. The indexing and search can be performed with OpenSearch high-level API. |
|
|
|
## Usage (HuggingFace) |
|
This model is supposed to run inside OpenSearch cluster. But you can also use it outside the cluster, with HuggingFace models API. |
|
|
|
```python |
|
import json |
|
import itertools |
|
import torch |
|
|
|
from transformers import AutoModelForMaskedLM, AutoTokenizer |
|
from transformers.utils import cached_path,hf_bucket_url |
|
|
|
|
|
# get sparse vector from dense vectors with shape batch_size * seq_len * vocab_size |
|
def get_sparse_vector(feature, output): |
|
values, _ = torch.max(output*feature["attention_mask"].unsqueeze(-1), dim=1) |
|
values = torch.log(1 + torch.relu(values)) |
|
values[:,special_token_ids] = 0 |
|
return values |
|
|
|
# transform the sparse vector to a dict of (token, weight) |
|
def transform_sparse_vector_to_dict(sparse_vector): |
|
sample_indices,token_indices=torch.nonzero(sparse_vector,as_tuple=True) |
|
non_zero_values = sparse_vector[(sample_indices,token_indices)].tolist() |
|
number_of_tokens_for_each_sample = torch.bincount(sample_indices).cpu().tolist() |
|
tokens = [transform_sparse_vector_to_dict.id_to_token[_id] for _id in token_indices.tolist()] |
|
|
|
output = [] |
|
end_idxs = list(itertools.accumulate([0]+number_of_tokens_for_each_sample)) |
|
for i in range(len(end_idxs)-1): |
|
token_strings = tokens[end_idxs[i]:end_idxs[i+1]] |
|
weights = non_zero_values[end_idxs[i]:end_idxs[i+1]] |
|
output.append(dict(zip(token_strings, weights))) |
|
return output |
|
|
|
# download the idf file from model hub. idf is used to give weights for query tokens |
|
def get_tokenizer_idf(tokenizer): |
|
url = hf_bucket_url("opensearch-project/opensearch-neural-sparse-encoding-doc-v1","idf.json") |
|
local_cached_path = cached_path(url) |
|
with open(local_cached_path) as f: |
|
idf = json.load(f) |
|
idf_vector = [0]*tokenizer.vocab_size |
|
for token,weight in idf.items(): |
|
_id = tokenizer._convert_token_to_id_with_added_voc(token) |
|
idf_vector[_id]=weight |
|
return torch.tensor(idf_vector) |
|
|
|
# load the model |
|
model = AutoModelForMaskedLM.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-doc-v1") |
|
tokenizer = AutoTokenizer.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-doc-v1") |
|
idf = get_tokenizer_idf(tokenizer) |
|
|
|
# set the special tokens and id_to_token transform for post-process |
|
special_token_ids = [tokenizer.vocab[token] for token in tokenizer.special_tokens_map.values()] |
|
get_sparse_vector.special_token_ids = special_token_ids |
|
id_to_token = ["" for i in range(tokenizer.vocab_size)] |
|
for token, _id in tokenizer.vocab.items(): |
|
id_to_token[_id] = token |
|
transform_sparse_vector_to_dict.id_to_token = id_to_token |
|
|
|
|
|
|
|
query = "What's the weather in ny now?" |
|
document = "Currently New York is rainy." |
|
|
|
# encode the query |
|
feature_query = tokenizer([query], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False) |
|
input_ids = feature_query["input_ids"] |
|
batch_size = input_ids.shape[0] |
|
query_vector = torch.zeros(batch_size, tokenizer.vocab_size) |
|
query_vector[torch.arange(batch_size).unsqueeze(-1), input_ids] = 1 |
|
query_sparse_vector = query_vector*idf |
|
|
|
# encode the document |
|
feature_document = tokenizer([document], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False) |
|
output = model(**feature_document)[0] |
|
document_sparse_vector = get_sparse_vector(feature_document, output) |
|
|
|
|
|
# get similarity score |
|
sim_score = torch.matmul(query_sparse_vector[0],document_sparse_vector[0]) |
|
print(sim_score) # tensor(12.8465, grad_fn=<DotBackward0>) |
|
|
|
|
|
query_token_weight = transform_sparse_vector_to_dict(query_sparse_vector)[0] |
|
document_query_token_weight = transform_sparse_vector_to_dict(document_sparse_vector)[0] |
|
for token in sorted(query_token_weight, key=lambda x:query_token_weight[x], reverse=True): |
|
if token in document_query_token_weight: |
|
print("score in query: %.4f, score in document: %.4f, token: %s"%(query_token_weight[token],document_query_token_weight[token],token)) |
|
|
|
|
|
|
|
# result: |
|
# score in query: 5.7729, score in document: 1.0552, token: ny |
|
# score in query: 4.5684, score in document: 1.1697, token: weather |
|
# score in query: 3.5895, score in document: 0.3932, token: now |
|
``` |
|
|
|
The above code sample shows an example of neural sparse search. Although there is no overlap token in original query and document, but this model performs a good match. |
|
|
|
## Performance |
|
This model is trained on MS MARCO dataset. The search relevance score of it can be found here (Neural sparse search document-only) https://opensearch.org/blog/improving-document-retrieval-with-sparse-semantic-encoders/. |